@article{rollmann_zwarts_edwards_yamamoto_callaerts_norga_mackay_anholt_2008, title={Pleiotropic effects of Drosophila neuralized on complex behaviors and brain structure}, volume={179}, ISSN={["1943-2631"]}, DOI={10.1534/genetics.108.088435}, abstractNote={Understanding how genotypic variation influences variation in brain structures and behavioral phenotypes represents a central challenge in behavioral genetics. In Drosophila melanogaster, the neuralized (neur) gene plays a key role in development of the nervous system. Different P-element insertional mutations of neur allow the development of viable and fertile adults with profoundly altered behavioral phenotypes that depend on the exact location of the inserted P element. The neur mutants exhibit reduced responsiveness to noxious olfactory and mechanosensory stimulation and increased aggression when limited food is presented after a period of food deprivation. These behavioral phenotypes are correlated with distinct structural changes in integrative centers in the brain, the mushroom bodies, and the ellipsoid body of the central complex. Transcriptional profiling of neur mutants revealed considerable overlap among ensembles of coregulated genes in the different mutants, but also distinct allele-specific differences. The diverse phenotypic effects arising from nearby P-element insertions in neur provide a new appreciation of the concept of allelic effects on phenotype, in which the wild type and null mutant are at the extreme ends of a continuum of pleiotropic allelic effects.}, number={3}, journal={GENETICS}, author={Rollmann, Stephanie A. and Zwarts, Liesbeth and Edwards, Alexis C. and Yamamoto, Akihiko and Callaerts, Patrick and Norga, Koenraad and Mackay, Trudy F. C. and Anholt, Robert R. H.}, year={2008}, month={Jul}, pages={1327–1336} } @article{edwards_rollmann_morgan_mackay_2006, title={Quantitative genomics of aggressive behavior in Drosophila melanogaster}, volume={2}, ISSN={["1553-7390"]}, DOI={10.1371/journal.pgen.0020154}, abstractNote={Aggressive behavior is important for animal survival and reproduction, and excessive aggression is an enormous social and economic burden for human society. Although the role of biogenic amines in modulating aggressive behavior is well characterized, other genetic mechanisms affecting this complex behavior remain elusive. Here, we developed an assay to rapidly quantify aggressive behavior in Drosophila melanogaster, and generated replicate selection lines with divergent levels of aggression. The realized heritability of aggressive behavior was approximately 0.10, and the phenotypic response to selection specifically affected aggression. We used whole-genome expression analysis to identify 1,539 probe sets with different expression levels between the selection lines when pooled across replicates, at a false discovery rate of 0.001. We quantified the aggressive behavior of 19 mutations in candidate genes that were generated in a common co-isogenic background, and identified 15 novel genes affecting aggressive behavior. Expression profiling of genetically divergent lines is an effective strategy for identifying genes affecting complex traits.}, number={9}, journal={PLOS GENETICS}, author={Edwards, Alexis C. and Rollmann, Stephanie M. and Morgan, Theodore J. and Mackay, Trudy F. C.}, year={2006}, month={Sep}, pages={1386–1395} } @article{edwards_ayroles_stone_carbone_lyman_mackay, title={A transcriptional network associated with natural variation in Drosophila aggressive behavior}, volume={10}, number={7}, journal={Genome Biology}, author={Edwards, A. C. and Ayroles, J. F. and Stone, E. A. and Carbone, M. A. and Lyman, R. F. and Mackay, T. F. C.} }