@article{chandi_jordan_york_milla-lewis_burton_culpepper_whitaker_2013, title={Interference and control of glyphosate-resistant and –susceptible Palmer amaranth (Amaranthus palmeri) populations under greenhouse conditions}, volume={61}, ISSN={["1550-2759"]}, DOI={10.1614/ws-d-12-00063.1}, abstractNote={Abstract Interference for 40 d after emergence (DAE) of corn, cotton, peanut, and snap bean by four glyphosate-resistant (GR) and four glyphosate-susceptible (GS) Palmer amaranth populations from Georgia and North Carolina was compared in the greenhouse. Greater interference from Palmer amaranth, measured as crop height and fresh weight reduction, was noted in cotton and peanut compared with corn or snap bean. Crop height 15 to 40 DAE was reduced similarly by GR and GS populations. Crop fresh weight, however, was reduced 25 and 19% in the presence of GS and GR populations, respectively. Measured as percent reduction in fresh weight, GR and GS populations of Palmer amaranth were controlled similarly by glufosinate, lactofen, paraquat, and trifloxysulfuron applied POST. Atrazine and dicamba controlled GR populations more effectively than GS populations. Nomenclature: Atrazine; dicamba; glufosinate; lactofen; paraquat; trifloxysulfuron; Palmer amaranth, Amaranthus palmeri S. Wats.; corn, Zea mays L.; cotton, Gossypium hirsutum L.; peanut, Arachis hypogaea L..; snap bean, Phaseolus vulgaris L.}, number={2}, journal={Weed Science}, publisher={Weed Science Society}, author={Chandi, A. and Jordan, D.L. and York, A.C. and Milla-Lewis, S.R. and Burton, J.D. and Culpepper, A.S. and Whitaker, J.R.}, year={2013}, pages={259–266} } @article{chandi_milla-lewis_jordan_york_burton_zuleta_whitaker_culpepper_2013, title={Use of AFLP Markers to Assess Genetic Diversity in Palmer Amaranth (Amaranthus palmeri) Populations from North Carolina and Georgia}, volume={61}, ISSN={["1550-2759"]}, DOI={10.1614/ws-d-12-00053.1}, abstractNote={Abstract Glyphosate-resistant Palmer amaranth is a serious problem in southern cropping systems. Much phenotypic variation is observed in Palmer amaranth populations with respect to plant growth and development and susceptibility to herbicides. This may be related to levels of genetic diversity existing in populations. Knowledge of genetic diversity in populations of Palmer amaranth may be useful in understanding distribution and development of herbicide resistance. Research was conducted to assess genetic diversity among and within eight Palmer amaranth populations collected from North Carolina and Georgia using amplified fragment length polymorphism (AFLP) markers. Pair-wise genetic similarity (GS) values were found to be relatively low, averaging 0.34. The highest and the lowest GS between populations were 0.49 and 0.24, respectively, while the highest and the lowest GS within populations were 0.56 and 0.36, respectively. Cluster and principal coordinate (PCO) analyses grouped individuals mostly by population (localized geographic region) irrespective of response to glyphosate or gender of individuals. Analysis of molecular variance (AMOVA) results when populations were nested within states revealed significant variation among and within populations within states while variation among states was not significant. Variation among and within populations within state accounted for 19 and 77% of the total variation, respectively, while variation among states accounted for only 3% of the total variation. The within population contribution towards total variation was always higher than among states and among populations within states irrespective of response to glyphosate or gender of individuals. These results are significant in terms of efficacy of similar management approaches both in terms of chemical and biological control in different areas infested with Palmer amaranth. Nomenclature: Palmer amaranth, Amaranthus palmeri S. Wats}, number={1}, journal={WEED SCIENCE}, publisher={Weed Science Society}, author={Chandi, Aman and Milla-Lewis, Susana R. and Jordan, David L. and York, Alan C. and Burton, James D. and Zuleta, M. Carolina and Whitaker, Jared R. and Culpepper, A. Stanley}, year={2013}, pages={136–145} } @article{chandi_york_jordan_beam_2011, title={Resistance to Acetolactate Synthase and Acetyl Co-A Carboxylase Inhibitors in North Carolina Italian Ryegrass (Lolium perenne)}, volume={25}, ISSN={["1550-2740"]}, DOI={10.1614/wt-d-11-00050.1}, abstractNote={Abstract Diclofop-resistant Italian ryegrass is widespread in southwestern North Carolina, and growers have resorted to using acetolactate synthase (ALS) inhibitors such as mesosulfuron and pyroxsulam to control this weed in wheat. In the spring of 2007, mesosulfuron failed to control Italian ryegrass in several wheat fields. Seed were collected from six fields in two counties and greenhouse studies were conducted to determine response to mesosulfuron and the acetyl-CoA carboxylase (ACCase) inhibitors diclofop and pinoxaden. All populations were resistant to diclofop and cross-resistant to pinoxaden. Five of the six populations were resistant to diclofop, pinoxaden, and mesosulfuron. An additional study with two biotypes confirmed cross-resistance to the ALS inhibitors imazamox, mesosulfuron, and pyroxsulam. Resistance to mesosulfuron was heritable. Nomenclature: Diclofop; imazamox; mesosulfuron; pinoxaden; pyroxsulam; Italian ryegrass, Lolium perenne L. subsp. multiflorum (Lam.) Husnot.; wheat, Triticum aestivum L.}, number={4}, journal={WEED TECHNOLOGY}, author={Chandi, Aman and York, Alan C. and Jordan, David L. and Beam, Josh B.}, year={2011}, pages={659–666} }