@article{gross_snyder-beattie_2016, title={A General, Synthetic Model for Predicting Biodiversity Gradients from Environmental Geometry}, volume={188}, ISSN={["1537-5323"]}, DOI={10.1086/688171}, abstractNote={Latitudinal and elevational biodiversity gradients fascinate ecologists, and have inspired dozens of explanations. The geometry of the abiotic environment is sometimes thought to contribute to these gradients, yet evaluations of geometric explanations are limited by a fragmented understanding of the diversity patterns they predict. This article presents a mathematical model that synthesizes multiple pathways by which environmental geometry can drive diversity gradients. The model characterizes species ranges by their environmental niches and limits on range sizes and places those ranges onto the simplified geometries of a sphere or cone. The model predicts nuanced and realistic species-richness gradients, including latitudinal diversity gradients with tropical plateaus and mid-latitude inflection points and elevational diversity gradients with low-elevation diversity maxima. The model also illustrates the importance of a mid-environment effect that augments species richness at locations with intermediate environments. Model predictions match multiple empirical biodiversity gradients, depend on ecological traits in a testable fashion, and formally synthesize elements of several geometric models. Together, these results suggest that previous assessments of geometric hypotheses should be reconsidered and that environmental geometry may play a deeper role in driving biodiversity gradients than is currently appreciated.}, number={4}, journal={AMERICAN NATURALIST}, author={Gross, Kevin and Snyder-Beattie, Andrew}, year={2016}, month={Oct}, pages={E85–E97} } @article{just_norton_traud_antonelli_poteate_backus_snyder-beattie_sanders_dunn_2014, title={Global biogeographic regions in a human-dominated world: the case of human diseases}, volume={5}, ISSN={["2150-8925"]}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-84919788790&partnerID=MN8TOARS}, DOI={10.1890/es14-00201.1}, abstractNote={Since the work of Alfred Russel Wallace, biologists have sought to divide the world into biogeographic regions that reflect the history of continents and evolution. These divisions not only guide conservation efforts, but are also the fundamental reference point for understanding the distribution of life. However, the biogeography of human‐associated species—such as pathogens, crops, or even house guests—has been largely ignored or discounted. As pathogens have the potential for direct consequences on the lives of humans, domestic animals, and wildlife it is prudent to examine their potential biogeographic history. Furthermore, if distinct regions exist for human‐associated pathogens, it would provide possible connections between human wellbeing and pathogen distributions, and, more generally, humans and the deep evolutionary history of the natural world. We tested for the presence of biogeographic regions for diseases of humans due to pathogens using country‐level disease composition data and compared the regions for vectored and non‐vectored diseases. We found discrete biogeographic regions for diseases, with a stronger influence of biogeography on vectored than non‐vectored diseases. We also found significant correlations between these biogeographic regions and environmental or socio‐political factors. While some biogeographic regions reflected those already documented for birds or mammals, others reflected colonial history. From the perspective of diseases caused by pathogens, humans have altered but not evaded the influence of ancient biogeography. This work is the necessary first step in examining the biogeographic relationship between humans and their associates.}, number={11}, journal={ECOSPHERE}, author={Just, Michael G. and Norton, Jacob F. and Traud, Amanda L. and Antonelli, Tim and Poteate, Aaron S. and Backus, Gregory A. and Snyder-Beattie, Andrew and Sanders, R. Wyatt and Dunn, Robert R.}, year={2014}, month={Nov} }