@article{popowski_moatti_scull_silkstone_lutz_lópez de juan abad_george_belcher_zhu_mei_et al._2022, title={Inhalable dry powder mRNA vaccines based on extracellular vesicles}, volume={5}, ISSN={2590-2385}, url={http://dx.doi.org/10.1016/j.matt.2022.06.012}, DOI={10.1016/j.matt.2022.06.012}, abstractNote={Respiratory diseases are a global burden, with millions of deaths attributed to pulmonary illnesses and dysfunctions. Therapeutics have been developed, but they present major limitations regarding pulmonary bioavailability and product stability. To circumvent such limitations, we developed room-temperature-stable inhalable lung-derived extracellular vesicles or exosomes (Lung-Exos) as mRNA and protein drug carriers. Compared with standard synthetic nanoparticle liposomes (Lipos), Lung-Exos exhibited superior distribution to the bronchioles and parenchyma and are deliverable to the lungs of rodents and nonhuman primates (NHPs) by dry powder inhalation. In a vaccine application, severe acute respiratory coronavirus 2 (SARS-CoV-2) spike (S) protein encoding mRNA-loaded Lung-Exos (S-Exos) elicited greater immunoglobulin G (IgG) and secretory IgA (SIgA) responses than its loaded liposome (S-Lipo) counterpart. Importantly, S-Exos remained functional at room-temperature storage for one month. Our results suggest that extracellular vesicles can serve as an inhaled mRNA drug-delivery system that is superior to synthetic liposomes.}, number={9}, journal={Matter}, publisher={Elsevier BV}, author={Popowski, Kristen D. and Moatti, Adele and Scull, Grant and Silkstone, Dylan and Lutz, Halle and López de Juan Abad, Blanca and George, Arianna and Belcher, Elizabeth and Zhu, Dashuai and Mei, Xuan and et al.}, year={2022}, month={Sep}, pages={2960–2974} }