@article{tonelli_narayanan_gurarslan_2018, title={Host-Guest Polymer Complexes}, volume={10}, ISSN={["2073-4360"]}, DOI={10.3390/polym10080911}, abstractNote={n/a}, number={8}, journal={POLYMERS}, author={Tonelli, Alan E. and Narayanan, Ganesh and Gurarslan, Alper}, year={2018}, month={Aug} } @article{huang_li_gurarslan_yu_kirste_guo_zhao_collazo_sitar_parsons_et al._2016, title={Atomically Thin MoS2 Narrowband and Broadband Light Superabsorbers}, volume={10}, ISSN={["1936-086X"]}, url={http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000381959100030&KeyUID=WOS:000381959100030}, DOI={10.1021/acsnano.6b02195}, abstractNote={We present a combined theoretical and experimental effort to enable strong light absorption (>70%) in atomically thin MoS2 films (≤4 layers) for either narrowband incidence with arbitrarily prespecified wavelengths or broadband incidence like solar radiation. This is achieved by integrating the films with resonant photonic structures that are deterministically designed using a unique reverse design approach based on leaky mode coupling. The design starts with identifying the properties of leaky modes necessary for the targeted strong absorption, followed by searching for the geometrical features of nanostructures to support the desired modes. This process is very intuitive and only involves a minimal amount of computation, thanks to the straightforward correlations between optical functionality and leaky modes as well as between leaky modes and the geometrical feature of nanostructures. The result may provide useful guidance for the development of high-performance atomic-scale photonic devices, such as solar cells, modulators, photodetectors, and photocatalysts.}, number={8}, journal={ACS NANO}, author={Huang, Lujun and Li, Guoqing and Gurarslan, Alper and Yu, Yiling and Kirste, Ronny and Guo, Wei and Zhao, Junjie and Collazo, Ramon and Sitar, Zlatko and Parsons, Gregory N. and et al.}, year={2016}, month={Aug}, pages={7493–7499} } @article{gurarslan_jiao_li_li_yu_gao_riedo_xu_cao_2016, title={Van der Waals Force Isolation of Monolayer MoS2}, volume={28}, ISSN={["1521-4095"]}, DOI={10.1002/adma.201601581}, abstractNote={Monolayer MoS2 can effectively screen the vdW interaction of underlying substrates with external systems by >90% because of the substantial increase in the separation between the substrate and external systems due to the presence of the monolayer. This substantial screening of vdW interactions by MoS2 monolayer is different from what reported at graphene.}, number={45}, journal={ADVANCED MATERIALS}, author={Gurarslan, Alper and Jiao, Shuping and Li, Tai-De and Li, Guoqing and Yu, Yiling and Gao, Yang and Riedo, Elisa and Xu, Zhiping and Cao, Linyou}, year={2016}, month={Dec}, pages={10055–10060} } @article{gurarslan_caydamli_shen_tse_yetukuri_tonelli_2015, title={Coalesced Poly(epsilon-caprolactone) Fibers Are Stronger}, volume={16}, ISSN={["1526-4602"]}, DOI={10.1021/bm501799y}, abstractNote={Melt-spun fibers were made from poly(ε-caprolactone) (PCL) coalesced from stoichiometric inclusion complex crystals formed with host urea. Melting and crystallization behaviors, mechanical properties, and the birefringence of undrawn and cold-drawn fibers were investigated. Undrawn coalesced PCL fibers were observed to have 500-600% higher moduli than undrawn as-received (asr) PCL fibers and a modulus comparable to drawn asr PCL fibers. Drawn coalesced PCL fibers have the highest crystallinity, orientation, and 65% higher moduli than drawn asr PCL fibers. Drawn coalesced PCL fibers have only a 5% higher crystallinity than drawn asr PCL fibers, yet they have 65% higher moduli and lower elongation at break values. Clearly, the intrinsic alignment of the coalesced polymers is the reason for their higher moduli and lower elongation, as confirmed by the birefringence observed in drawn coalesced and asr-PCL fibers. The improved mechanical properties of coalesced PCL fibers make them a better candidate for use in tissue engineering as scaffolds.}, number={3}, journal={BIOMACROMOLECULES}, author={Gurarslan, Alper and Caydamli, Yavuz and Shen, Jialong and Tse, Shiaomeng and Yetukuri, Mahijeeth and Tonelli, Alan E.}, year={2015}, month={Mar}, pages={890–893} } @article{yu_yu_cai_li_gurarslan_peelaers_aspnes_walle_nguyen_zhang_et al._2015, title={Exciton-dominated Dielectric Function of Atomically Thin MoS2 Films}, volume={5}, ISSN={["2045-2322"]}, DOI={10.1038/srep16996}, abstractNote={AbstractWe systematically measure the dielectric function of atomically thin MoS2 films with different layer numbers and demonstrate that excitonic effects play a dominant role in the dielectric function when the films are less than 5–7 layers thick. The dielectric function shows an anomalous dependence on the layer number. It decreases with the layer number increasing when the films are less than 5–7 layers thick but turns to increase with the layer number for thicker films. We show that this is because the excitonic effect is very strong in the thin MoS2 films and its contribution to the dielectric function may dominate over the contribution of the band structure. We also extract the value of layer-dependent exciton binding energy and Bohr radius in the films by fitting the experimental results with an intuitive model. The dominance of excitonic effects is in stark contrast with what reported at conventional materials whose dielectric functions are usually dictated by band structures. The knowledge of the dielectric function may enable capabilities to engineer the light-matter interactions of atomically thin MoS2 films for the development of novel photonic devices, such as metamaterials, waveguides, light absorbers and light emitters.}, journal={SCIENTIFIC REPORTS}, author={Yu, Yiling and Yu, Yifei and Cai, Yongqing and Li, Wei and Gurarslan, Alper and Peelaers, Hartwin and Aspnes, David E. and Walle, Chris G. and Nguyen, Nhan V. and Zhang, Yong-Wei and et al.}, year={2015}, month={Nov} } @article{gurarslan_shen_caydamli_tonelli_2015, title={Pyriproxyfen cyclodextrin inclusion compounds}, volume={82}, ISSN={["1573-1111"]}, DOI={10.1007/s10847-015-0526-7}, number={3-4}, journal={JOURNAL OF INCLUSION PHENOMENA AND MACROCYCLIC CHEMISTRY}, author={Gurarslan, Alper and Shen, Jialong and Caydamli, Yavuz and Tonelli, Alan E.}, year={2015}, month={Aug}, pages={489–496} } @article{gurarslan_gurarslan_tonelli_2015, title={Characterizing Polymers with Heterogeneous Micro- and Macrostructures}, volume={53}, ISSN={["1099-0488"]}, DOI={10.1002/polb.23645}, abstractNote={The potentially extreme heterogeneity of polymer micro- and macrostructures has been demonstrated and a means for characterizing them has been suggested. To ensure that all possible microstructures, such as diad stereosequences in vinyl homopolymers and monomer sequences in copolymers, including their locations along polymer chains, that is, all macrostructures, are represented, it became necessary to generate samples with huge quantities (many many tons) of constituent polymer chains. This suggested a practical need for distinguishing between polymer samples with chains that have homogeneous and heterogeneous populations of micro- and macrostructures. A combination of high resolution 13C-nuclear magnetic resonance to determine the types and amounts of constituent short-range microstructures, and dilute solution electrical birefringence or Kerr effect measurements to locate them along the polymer chains has been suggested, and may be able to achieve this distinction. This combination of techniques is required to reduce the innumerably large numbers of different possible polymer macrostructres whose Kerr constants would have to be calculated, for comparison to the observed values. The ability to determine polymer macrostructures is critical to the development of relevant, more meaningful, and therefore, improved structure–property relations for polymer materials. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015, 53, 409–414}, number={6}, journal={JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS}, author={Gurarslan, Rana and Gurarslan, Alper and Tonelli, Alan E.}, year={2015}, month={Mar}, pages={409–414} } @article{gurarslan_yu_su_yu_suarez_yao_zhu_ozturk_zhang_cao_2014, title={Surface-Energy-Assisted Perfect Transfer of Centimeter-Scale Mono layer and Few-Layer MoS2 Films onto Arbitrary Substrates}, volume={8}, ISSN={["1936-086X"]}, DOI={10.1021/nn5057673}, abstractNote={The transfer of synthesized 2D MoS2 films is important for fundamental and applied research. However, it is problematic to translate the well-established transfer processes for graphene to MoS2 due to different growth mechanisms and surface properties. Here we demonstrate a surface-energy-assisted process that can perfectly transfer centimeter-scale monolayer and few-layer MoS2 films from original growth substrates onto arbitrary substrates with no observable wrinkles, cracks, and polymer residues. The unique strategies used in this process include leveraging the penetration of water between hydrophobic MoS2 films and hydrophilic growth substrates to lift off the films and dry transferring the film after the lift off. This is in stark contrast with the previous transfer process for synthesized MoS2 films, which explores the etching of the growth substrate by hot base solutions to lift off the films. Our transfer process can effectively eliminate the mechanical force caused by bubble generations, the attacks from chemical etchants, and the capillary force induced when transferring the film outside solutions as in the previous transfer process, which consists of the major causes for the previous unsatisfactory transfer. Our transfer process also benefits from using polystyrene (PS), instead of poly(methyl methacrylate) (PMMA) that was widely used previously, as the carrier polymer. PS can form more intimate interaction with MoS2 films than PMMA and is important for maintaining the integrity of the film during the transfer process. This surface-energy-assisted approach can be generally applied to the transfer of other 2D materials, such as WS2.}, number={11}, journal={ACS NANO}, author={Gurarslan, Alper and Yu, Yifei and Su, Liqin and Yu, Yiling and Suarez, Francisco and Yao, Shanshan and Zhu, Yong and Ozturk, Mehmet and Zhang, Yong and Cao, Linyou}, year={2014}, month={Nov}, pages={11522–11528} } @article{gurarslan_shen_tonelli_2013, title={Single-component poly(epsilon-caprolactone) composites}, volume={54}, ISSN={["1873-2291"]}, DOI={10.1016/j.polymer.2013.08.017}, abstractNote={Abstract Non-covalently bonded crystalline inclusion compounds (ICs) have been formed by threading host cyclic starches, α-cyclodextrins (α-CDs), onto guest poly(e-caprolactone) (PCL) chains and by co-crystallization of guest PCL and host urea (U). PCLs were coalesced from both ICs by appropriate removal of the α-CD and U hosts. When added at low concentrations, PCL coalesced from its α-CD–IC served as an effective self-nucleating agent for the bulk crystallization of as-received PCL from the melt. Film sandwiches consisting of two layers of as-received (asr) (control), and one layer each of asr and self-nucleated (nuc) (composite) PCLs were produced by melt pressing. A composite sandwich consisting of a film of neat PCL coalesced from its U–IC (c-PCL) and a film of asr-PCL was also melt pressed. DSC showed that both composite films maintain their characteristic structures and properties even after melt-pressing them together. Both single component film sandwiches exhibited strong interfaces and better mechanical properties than the asr-PCL/asr-PCL control composite sandwiches. These results are similar to those previously obtained on similarly prepared nylon-6 (N-6) sandwich composites made with asr- and nuc-N-6 films with the same levels of crystallinity. However, while the elongation at break was greatly reduced in the asr-N-6/nuc-N-6 composite, asr-/asr-, asr-/c-, and asr-/nuc-, PCL/PCL-composites all showed similarly large elongations at break. The above room temperature and well below room temperature glass-transition temperatures of N-6 and PCL are likely the cause of their widely different elongations at break.}, number={21}, journal={POLYMER}, author={Gurarslan, Alper and Shen, Jialong and Tonelli, Alan E.}, year={2013}, month={Oct}, pages={5747–5753} } @article{gurarslan_joijode_tonelli_2012, title={Polymers coalesced from their cyclodextrin inclusion complexes: What can they tell us about the morphology of melt-crystallized polymers?}, volume={50}, ISSN={["0887-6266"]}, DOI={10.1002/polb.23074}, abstractNote={AbstractCyclodextrins (CDs) are cyclic polysaccharides with nano‐size, largely hydrophobic cavities, and exteriors covered with hydrophilic hydroxyl groups, making them water soluble. Threading and filling their cavities with polymer chains produces noncovalently bonded crystalline inclusion compounds (ICs). In this study, we formed fully covered, stoichiometric ICs between guest poly(L‐lactic acid), poly(ε‐caprolactone), and nylon‐6 chains and host α‐CD. Coalesced samples of all three polymers were obtained after appropriately removing the stacked α‐CD host channels from their ICs. Distinct differential scanning calorimetriy (DSC) thermograms were observed for as‐received and coalesced samples, with the coalesced samples crystallizing faster at higher temperatures from their melts, and this distinction was maintained even after extensive, long‐time melt‐annealing (hours, days, and weeks). We believe this is due to the largely unentangled chains with extended conformations that are more densely packed in the initially coalesced samples. When small amounts (∼2 wt %) of the coalesced polymers are used as self‐nucleating agents for their as‐received samples, the resulting self‐nucleated samples show DSC thermograms similar to those of the neat coalesced polymers, including their long‐time stability to melt‐annealing. Coalesced polymers, whether neat or in samples they self‐nucleate, may conserve their organization in the melt (largely extended and unentangled chains) for long periods, because the process of entangling the many chains influenced by a single initially extended unentangled coalesced chain, after it randomly coils, is extremely sluggish. By contrast, in melt‐crystallized or solution‐cast samples, polymer chains generally become fully randomly coiled, interpenetrate, and entangle after being heated and held in their melts for comparatively much shorter times. For example, we have recently observed (DSC) that ultra high molecular weight, gel‐spun spectra polyethylene (PE) fibers® did not conserve or retain any memory of their as‐spun and highly drawn semicrystalline morphology even after spending as little as 2 min in the melt. As a consequence of the comparison to the behavior of coalesced polymer melts, we believe that polyethylene chains in Spectra fibers® must be at least intimately dispersed within their crystalline regions, and likely partially coiled and entangled in their noncrystalline regions, thereby facilitating their rapid transformation into a full entanglement network of randomly coiling chains in the melt. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012}, number={12}, journal={JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS}, author={Gurarslan, Alper and Joijode, Abhay S. and Tonelli, Alan E.}, year={2012}, month={Jun}, pages={813–823} }