@article{gurumurthy_kleinstreuer_2022, title={Analysis of improved oral drug delivery with different helical stream inhalation modes}, volume={141}, ISSN={["1879-0534"]}, DOI={10.1016/j.compbiomed.2021.105132}, abstractNote={A challenging aspect of pulmonary drug delivery devices, e.g., metered dose inhalers (MDIs), is to deliver therapeutic drugs to prescribed target locations at the required dosage level. In this study, validated computer simulations of micron-drug inhalation with angled or radially positioned helical fluid-particle streams are simulated and analyzed. For a suitable swirl number significant improvements in drug delivery, especially to deeper lung regions, have been achieved. Specifically, considering realistic polydisperse particle distributions at the mouth inlet for a subject-specific upper lung airway geometry, a 10-degree angled helical stream increased the local efficacy by up to 26% in comparison to a conventional helical stream, causing an overall dosage of about 60% to the deep lung. Considering lobe-specific drug targeting scenarios, while using an off-center, i.e., radially well positioned, helical-flow mouthpiece, the local particle-deposition efficacy increased from 9% to 24% in the left lobe and from 25% to 38% in the right lobe in comparison to conventional drug-aerosol stream released from the central position. The efficacy of helical streams for pulmonary drug delivery applications has been established.}, journal={COMPUTERS IN BIOLOGY AND MEDICINE}, author={Gurumurthy, Adithya and Kleinstreuer, Clement}, year={2022}, month={Feb} } @article{gurumurthy_kleinstreuer_2021, title={Improving Pulmonary Nanotherapeutics Using Helical Aerosol Streams: An In Silico Study}, volume={143}, ISSN={["1528-8951"]}, DOI={10.1115/1.4051217}, abstractNote={Abstract The increasing prevalence of pulmonary ailments including asthma, chronic obstructive pulmonary disorder (COPD), lung tuberculosis and lung cancer, coupled with the success of pulmonary therapy has led to a plethora of scientific research focusing on improving the efficacy of pulmonary drug delivery systems. Recent advances in nanoscience and nanoengineering help achieve this by developing stable, potent, inhalable nano-size drug formulations that potentially increase dosages at target sites with significant therapeutic effects. In this study, we numerically analyze a novel methodology of incorporating helical air-nanoparticle streams for pulmonary nano-therapeutics, using a customized version of the open-source computational fluid dynamics (CFD) toolbox OpenFOAM. As nanoparticles predominantly follow streamlines, helical airflow transports them in a centralized core along the human upper respiratory tract, thereby minimizing deposition and hence waste on the oropharyngeal walls, potentially also reducing the risk of drug-induced toxicity in healthy tissues. Advancing our previous study on micron-particle dynamics, helical streams are shown to improve the delivery of nanodrugs, to deeper lung regions when compared to a purely axial fluid-particle jet. For example, an optimal helical stream featuring a volumetric flow rate of 30 l/min, increased the delivery of 300 nm-particles to regions beyond generation 3 by 5%, in comparison to a conventional axial jet. Results from regional deposition studies are presented, to demonstrate the robustness of helical flows in pulmonary drug delivery; thus, paving the way towards successful implementation of the novel methodology in nanotherapeutics.}, number={11}, journal={JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME}, author={Gurumurthy, Adithya and Kleinstreuer, Clement}, year={2021}, month={Nov} } @article{gurumurthy_kleinstreuer_2021, title={Helical fluid-particle flow dynamics for controlling micron-particle deposition in a representative human upper lung-airway model}, volume={151}, ISSN={["1879-1964"]}, DOI={10.1016/j.jaerosci.2020.105656}, abstractNote={The transport and deposition of inhaled micron particles is largely determined by their inlet conditions, breathing rate, and the individual airway geometry. In this study, helical air-particle flow is introduced, which significantly affects the particle dynamics with applications to targeted drug delivery. Specifically, helical flow, which reduces axial momentum, can be controlled by varying the swirl number and hence the characteristics of the fluid-particle stream. In case of drug-aerosol delivery, the waste of inhaled drugs in the human upper respiratory tract due to inertial impaction can be mitigated by implementing a controlled helical flow with a modified inhaler. For example, 2 μm-particle deposition was reduced in the oral cavity for a helical fluid-particle stream with 10 l/min inhalation by 39.7% when the swirl number was increased from 0 to 0.6. Considering a 30 l/min inhalation flow rate, the deposition fraction of 2 μm-particles in the oral cavity was reduced by 73.5% as the swirl number increased from 0 to 2. A new non-dimensional parameter called the swirl number threshold (Sth), is also discussed, which is useful in assessing the impact of helical streams in drug-aerosol delivery. All computer experiments were performed with an enhanced version of the open-source computational fluid dynamics toolbox OpenFOAM.}, journal={JOURNAL OF AEROSOL SCIENCE}, author={Gurumurthy, Adithya and Kleinstreuer, Clement}, year={2021}, month={Jan} }