@article{eaton_terando_collazo_2024, title={Applying portfolio theory to benefit endangered amphibians in coastal wetlands threatened by climate change, high uncertainty, and significant investment risk}, volume={5}, ISSN={["2673-611X"]}, DOI={10.3389/fcosc.2024.1444626}, abstractNote={The challenge of selecting strategies to adapt to climate change is complicated by the presence of irreducible uncertainties regarding future conditions. Decisions regarding long-term investments in conservation actions contain significant risk of failure due to these inherent uncertainties. To address this challenge, decision makers need an arsenal of sophisticated but practical tools to help guide spatial conservation strategies. Theory asserts that managing risks can be achieved by diversifying an investment portfolio to include assets – such as stocks and bonds – that respond inversely to one another under a given set of conditions. We demonstrate an approach for formalizing the diversification of conservation assets (land parcels) and actions (restoration, species reintroductions) by using correlation structure to quantify the degree of risk for any proposed management investment. We illustrate a framework for identifying future habitat refugia by integrating species distribution modeling, scenarios of climate change and sea level rise, and impacts to critical habitat. Using the plains coqui ( Eleutherodactylus juanariveroi ), an endangered amphibian known from only three small wetland populations on Puerto Rico’s coastal plains, we evaluate the distribution of potential refugia under two model parameterizations and four future sea-level rise scenarios. We then apply portfolio theory using two distinct objective functions and eight budget levels to inform investment strategies for mitigating risk and increasing species persistence probability. Models project scenario-specific declines in coastal freshwater wetlands from 2% to nearly 30% and concurrent expansions of transitional marsh and estuarine open water. Conditional on the scenario, island-wide species distribution is predicted to contract by 25% to 90%. Optimal portfolios under the first objective function – benefit maximization – emphasizes translocating frogs to existing protected areas rather than investing in the protection of new habitat. Alternatively, optimal strategies using the second objective function – a risk-benefit tradeoff framework – include significant investment to protect parcels for the purpose of reintroduction or establishing new populations. These findings suggest that leveraging existing protected areas for species persistence, while less costly, may contain excessive risk and could result in diminished conservation benefits. Although our modeling includes numerous assumptions and simplifications, we believe this framework provides useful inference for exploring resource dynamics and developing robust adaptation strategies using an approach that is generalizable to other conservation problems which are spatial or portfolio in nature and subject to unresolvable uncertainty.}, journal={FRONTIERS IN CONSERVATION SCIENCE}, author={Eaton, Mitchell J. and Terando, Adam J. and Collazo, Jaime A.}, year={2024}, month={Oct} } @article{hutchens_kupfer_gao_sanchez_meentemeyer_terando_kevin hiers_2024, title={Projecting the long-term effects of large-scale human influence on the spatial and functional persistence of extant longleaf pine ecosystems in the Florida Flatwoods Pyrome}, volume={7}, ISSN={["2578-4854"]}, url={http://dx.doi.org/10.1111/csp2.13187}, DOI={10.1111/csp2.13187}, abstractNote={Abstract Decades of human activities and fire suppression have adversely affected longleaf pine ( Pinus palustris ) ecosystems, which are home to high levels of diversity and endemism. These iconic ecosystems also now face challenges from urbanization and climate change, which will alter conservation outcomes over the remainder of the 21st century. To explore how long‐term, large‐scale human influences could affect the spatial and functional persistence of extant longleaf pine ecosystems in the Florida Flatwoods Pyrome, we extracted a set of 2400 longleaf pine patches ≥40 ha in size from the Florida Longleaf Pine Ecosystem Geodatabase. Projections from the FUTURES urban growth model and the Florida 2070 project indicate that development will lead to losses of existing longleaf pine habitat, reductions in longleaf pine patch size, and patches that are predominantly located in close proximity to developed areas. Finer‐scale patterns of longleaf pine loss in three focal landscapes highlighted differences in land protection, ecological setting, and development pressure and the value of using of multiple urbanization iterations. The occurrence of suitable conditions to conduct prescribed fires, a crucial tool for maintaining, improving, and restoring longleaf pine ecosystems, is projected to decrease seasonally throughout the study area. As a result, the functional persistence of ecosystems is at risk due to climate changes that increase barriers to the safe and reliable application of intentional fire. The long‐term viability of this critical ecosystem will warrant the evaluation of adaptive strategies that explicitly account for the individual and compounding effects of urban development and changing fire management conditions when considering options for ecosystem protection, management, and restoration.}, journal={CONSERVATION SCIENCE AND PRACTICE}, author={Hutchens, Lilian and Kupfer, John A. and Gao, Peng and Sanchez, Georgina M. and Meentemeyer, Ross K. and Terando, Adam J. and Kevin Hiers, J.}, year={2024}, month={Jul} } @article{massoud_lee_terando_wehner_2023, title={Bayesian weighting of climate models based on climate sensitivity}, volume={4}, ISSN={["2662-4435"]}, DOI={10.1038/s43247-023-01009-8}, abstractNote={AbstractUsing climate model ensembles containing members that exhibit very high climate sensitivities to increasing CO2 concentrations can result in biased projections. Various methods have been proposed to ameliorate this ‘hot model’ problem, such as model emulators or model culling. Here, we utilize Bayesian Model Averaging as a framework to address this problem without resorting to outright rejection of models from the ensemble. Taking advantage of multiple lines of evidence used to construct the best estimate of the earth’s climate sensitivity, the Bayesian Model Averaging framework produces an unbiased posterior probability distribution of model weights. The updated multi-model ensemble projects end-of-century global mean surface temperature increases of 2 oC for a low emissions scenario (SSP1-2.6) and 5 oC for a high emissions scenario (SSP5-8.5). These estimates are lower than those produced using a simple multi-model mean for the CMIP6 ensemble. The results are also similar to results from a model culling approach, but retain some weight on low-probability models, allowing for consideration of the possibility that the true value could lie at the extremes of the assessed distribution. Our results showcase Bayesian Model Averaging as a path forward to project future climate change that is commensurate with the available scientific evidence.}, number={1}, journal={COMMUNICATIONS EARTH & ENVIRONMENT}, author={Massoud, Elias C. and Lee, Hugo K. and Terando, Adam and Wehner, Michael}, year={2023}, month={Oct} } @article{jewell_peterson_martin_stevenson_terando_teseneer_2023, title={Conservation decision makers worry about relevancy and funding but not climate change}, volume={1}, ISSN={["2328-5540"]}, DOI={10.1002/wsb.1424}, abstractNote={AbstractStakeholders fundamentally shape the success of wildlife management, yet little is known about how one of the most important stakeholder groups, wildlife agency decision makers, view emerging conservation challenges. Wildlife agency decision makers collectively shape how wildlife conservation unfolds in North America, but their perspectives are generally absent in the literature. Challenges including climate change, conservation funding models, and wildlife disease make understanding how wildlife decision makers view the future of wildlife conservation essential. We interviewed 48 directors and supervisory board members of wildlife agencies in the southeast United States from July 2019 to January 2020 to gauge their assessment of future conservation challenges and preferred response strategies. Declining agency relevancy and insufficient funding were the 2 most commonly identified challenges, while climate change was rarely mentioned as an issue because decision makers believed it was a relatively slow‐moving background condition. Decision makers described improving relevance through education and outreach as their primary response to conservation challenges. Our results suggest that climate change‐informed wildlife management may benefit from a 2‐pronged approach. First, we suggest decision makers should be informed about the challenges posed by climate change, and second, existing efforts to promote diversity among constituents should include engaging groups who support tackling the threat climate change poses to wildlife conservation. Increasing the priority given to climate change adaptation efforts in wildlife agencies will likely require future research to discern which approaches can most improve the perceived salience of climate change to decision makers.}, journal={WILDLIFE SOCIETY BULLETIN}, author={Jewell, Kathryn and Peterson, M. Nils and Martin, Mallory and Stevenson, Kathryn T. and Terando, Adam and Teseneer, Rachel}, year={2023}, month={Jan} } @article{boone_moorman_moscicki_collier_chamberlain_terando_pacifici_2023, title={Robust assessment of associations between weather and eastern wild turkey nest success}, volume={88}, ISSN={0022-541X 1937-2817}, url={http://dx.doi.org/10.1002/jwmg.22524}, DOI={10.1002/jwmg.22524}, abstractNote={AbstractTemperature and precipitation have been identified as factors that potentially influence eastern wild turkey (Meleagris gallopavo silvestris) reproduction, but robust analyses testing the relationship between weather parameters and turkey nest success are lacking. Therefore, we assessed how weather influenced turkey daily nest survival using 8 years of data collected from 715 nests across the southeastern United States. We also conducted exploratory analyses investigating if weather conditions during or prior to nesting best predicted nest success. We then assessed the possible implications of climate change through 2041–2060 for future eastern wild turkey daily nest survival and nest success for variables determined significant in analyses. During incubation, positive anomalies of minimum daily temperature were associated with greater daily nest survival. Precipitation during nesting was not a good predictor of daily nest survival. Exploratory analyses unexpectedly indicated that weather conditions in January prior to incubation were more important to nest success than weather conditions during incubation. In January, negative anomalies of minimum temperature and greater average daily precipitation were associated with greater nest success. Projections of future nest success or daily nest survival based on these relationships with the predictive covariates, and informed by climate models, suggest that nest success may increase as January precipitation increases and that daily nest survival may increase as temperature during incubation increases. These positive associations could be offset by a negative association between nest success and the expected increases in January minimum average temperature. Additional research is needed to investigate causes of these relationships and assess the implications of climate change for eastern wild turkey poult survival.}, number={2}, journal={The Journal of Wildlife Management}, publisher={Wiley}, author={Boone, Wesley W. and Moorman, Christopher E. and Moscicki, David J. and Collier, Bret A. and Chamberlain, Michael J. and Terando, Adam J. and Pacifici, Krishna}, year={2023}, month={Nov} } @article{sanchez_petrasova_skrip_collins_lawrimore_vogler_terando_vukomanovic_mitasova_meentemeyer_2023, title={Spatially interactive modeling of land change identifies location-specific adaptations most likely to lower future flood risk}, volume={13}, ISSN={["2045-2322"]}, url={http://dx.doi.org/10.1038/s41598-023-46195-9}, DOI={10.1038/s41598-023-46195-9}, abstractNote={AbstractImpacts of sea level rise will last for centuries; therefore, flood risk modeling must transition from identifying risky locations to assessing how populations can best cope. We present the first spatially interactive (i.e., what happens at one location affects another) land change model (FUTURES 3.0) that can probabilistically predict urban growth while simulating human migration and other responses to flooding, essentially depicting the geography of impact and response. Accounting for human migration reduced total amounts of projected developed land exposed to flooding by 2050 by 5%–24%, depending on flood hazard zone (50%–0.2% annual probability). We simulated various “what-if” scenarios and found managed retreat to be the only intervention with predicted exposure below baseline conditions. In the business-as-usual scenario, existing and future development must be either protected or abandoned to cope with future flooding. Our open framework can be applied to different regions and advances local to regional-scale efforts to evaluate potential risks and tradeoffs.}, number={1}, journal={SCIENTIFIC REPORTS}, publisher={Springer Science and Business Media LLC}, author={Sanchez, Georgina M. and Petrasova, Anna and Skrip, Megan M. and Collins, Elyssa L. and Lawrimore, Margaret A. and Vogler, John B. and Terando, Adam and Vukomanovic, Jelena and Mitasova, Helena and Meentemeyer, Ross K.}, year={2023}, month={Nov} } @article{montefiore_nelson_staudinger_terando_2023, title={Vulnerability of Estuarine Systems in the Contiguous United States to Water Quality Change Under Future Climate and Land-Use}, volume={11}, ISSN={["2328-4277"]}, url={https://doi.org/10.1029/2022EF002884}, DOI={10.1029/2022EF002884}, abstractNote={AbstractChanges in climate and land‐use and land‐cover (LULC) are expected to influence surface water runoff and nutrient characteristics of estuarine watersheds, but the extent to which estuaries are vulnerable to altered nutrient loading under future conditions is poorly understood. The present work aims to address this gap through the development of a new vulnerability assessment framework that accounts for (a) estuarine exposure to projected changes in total nitrogen (TN) and total phosphorus (TP) loads as a function of LULC and climate change under several scenarios, (b) sensitivity, and (c) adaptive capacity. The framework was applied to 112 estuaries and their contributing watersheds across the contiguous U.S., specifically to look at regional variability in estuarine vulnerability to nutrient loading. Study findings revealed that the largest increases in estuarine nutrient loads are expected in the North and South Atlantic regions and eastern Gulf of Mexico, while the lowest increases are expected in the North and South Pacific regions and the western Gulf of Mexico. However, the North Atlantic and the South Pacific had the highest adaptive capacity, which could potentially counteract the effects of LULC and climate change on nutrient loads. Strong variation in predicted estuarine nutrient loads was observed as a function of climate model projections, while projected LULC changes were more consistently associated with elevated loads. Our findings illustrate the benefits of integrating natural and socio‐ecological factors to identify opportunities to develop adaptation plans and policies to mitigate ecological degradation in vitally important estuaries.}, number={3}, journal={EARTHS FUTURE}, author={Montefiore, L. R. and Nelson, N. G. and Staudinger, M. D. and Terando, A.}, year={2023}, month={Mar} } @article{louthan_keighron_kiekebusch_cayton_terando_morris_2022, title={Climate change weakens the impact of disturbance interval on the growth rate of natural populations of Venus flytrap}, ISSN={["1557-7015"]}, DOI={10.1002/ecm.1528}, abstractNote={AbstractDisturbances elicit both positive and negative effects on organisms; these effects vary in their strength and their timing. Effects of disturbance interval (i.e., the length of time between disturbances) on population growth will depend on both the timing and strength of positive and negative effects of disturbances. Climate change can modify the relative strengths of these positive and negative effects, leading to altered optimal disturbance intervals (the disturbance interval at which population growth rate is highest) and changes in the sensitivity of population growth rate to disturbance interval. While we know that climate may alter impacts of disturbance in some systems, we have a poor understanding of which effects of disturbance and which vital rates might drive an altered response to disturbance interval in a changing climate. We use demographic monitoring of natural populations of Dionaea muscipula, the Venus flytrap, that have experienced natural and managed fires, combined with realistic past and future climate projections, to construct climate‐ and fire‐driven integral projection models (IPMs). We use these IPMs to compare the effect of fire return interval (FRI) on population growth rate in past and future climates. To dissect the mechanisms driving FRI response, we then construct IPMs with demographic data from an experimental manipulation of fire effects (ash addition, neighbor removal) and an accidental fire. Our results show that an FRI of 10 years is optimal for D. muscipula in past climate conditions, but a longer FRI (12 years) is optimal in future climate conditions. Further, deviations from optimal FRI reduce population growth rate dramatically in the past climate, but this reduction is muted in a future climate (future minus past sensitivity = 0.006, 95% CI [0.002, 0.011]). Finally, our experimental work suggests that fire effects are driven in part by positive, additive effects of competitor removal and ash addition immediately following a fire; for one population, both these treatments significantly increased population growth rate. Our work suggests that climate change can alter the response of populations to disturbance, highlighting the need to consider the interacting effects of multiple abiotic drivers when projecting future population growth and geographical distributions.}, journal={ECOLOGICAL MONOGRAPHS}, author={Louthan, Allison M. and Keighron, Melina and Kiekebusch, Elsita and Cayton, Heather and Terando, Adam and Morris, William F.}, year={2022}, month={Jul} } @article{collins_sanchez_terando_stillwell_mitasova_sebastian_meentemeyer_2022, title={Predicting flood damage probability across the conterminous United States}, volume={17}, ISSN={["1748-9326"]}, url={https://doi.org/10.1088/1748-9326/ac4f0f}, DOI={10.1088/1748-9326/ac4f0f}, abstractNote={Abstract Floods are the leading cause of natural disaster damages in the United States, with billions of dollars incurred every year in the form of government payouts, property damages, and agricultural losses. The Federal Emergency Management Agency oversees the delineation of floodplains to mitigate damages, but disparities exist between locations designated as high risk and where flood damages occur due to land use and climate changes and incomplete floodplain mapping. We harnessed publicly available geospatial datasets and random forest algorithms to analyze the spatial distribution and underlying drivers of flood damage probability (FDP) caused by excessive rainfall and overflowing water bodies across the conterminous United States. From this, we produced the first spatially complete map of FDP for the nation, along with spatially explicit standard errors for four selected cities. We trained models using the locations of historical reported flood damage events (n = 71 434) and a suite of geospatial predictors (e.g. flood severity, climate, socio-economic exposure, topographic variables, soil properties, and hydrologic characteristics). We developed independent models for each hydrologic unit code level 2 watershed and generated a FDP for each 100 m pixel. Our model classified damage or no damage with an average area under the curve accuracy of 0.75; however, model performance varied by environmental conditions, with certain land cover classes (e.g. forest) resulting in higher error rates than others (e.g. wetlands). Our results identified FDP hotspots across multiple spatial and regional scales, with high probabilities common in both inland and coastal regions. The highest flood damage probabilities tended to be in areas of low elevation, in close proximity to streams, with extreme precipitation, and with high urban road density. Given rapid environmental changes, our study demonstrates an efficient approach for updating FDP estimates across the nation.}, number={3}, journal={ENVIRONMENTAL RESEARCH LETTERS}, author={Collins, Elyssa L. and Sanchez, Georgina M. and Terando, Adam and Stillwell, Charles C. and Mitasova, Helena and Sebastian, Antonia and Meentemeyer, Ross K.}, year={2022}, month={Mar} } @article{kupfer_lackstrom_grego_dow_terando_hiers_2022, title={Prescribed fire in longleaf pine ecosystems: fire managers' perspectives on priorities, constraints, and future prospects}, volume={18}, ISSN={["1933-9747"]}, DOI={10.1186/s42408-022-00151-6}, abstractNote={Abstract Background Projected trajectories of climate and land use change over the remainder of the twenty-first century may result in conditions and situations that require flexible approaches to conservation planning and practices. For example, prescribed burning is a widely used management tool for promoting longer-term resilience and sustainability in longleaf pine ecosystems of the southeastern United States, but regional stressors such as climatic warming, changing fire conditions, and an expanding wildland-urban interface may challenge its application. To facilitate the development of fire management strategies that account for such changes, we surveyed nearly 300 fire managers to elicit information on the criteria used for prioritizing burn sites, current burning practices and constraints, and expectations for changes in burning opportunities, including those pertaining to climate change and urban growth. Results Respondents noted that their most common criteria for selecting longleaf pine stands for burning were fire history, ecosystem health, and fuel reduction, with the presence of threatened and endangered species also given priority by public land managers. Many respondents (38%) cited recent burn frequencies that fall short of historic burn intervals. Barriers to burning included legal, institutional, and managerial constraints, such as proximity to human developments, public concerns, and risk aversion, as well as environmental and resource constraints, including weather, air quality restrictions, and lack of personnel, equipment, or funding. Roughly half of all respondents expect that opportunities to burn will be reduced over the next 30 years, particularly during the growing season. Fire manager perceptions of factors that will limit prescribed burning in the future include a similar suite of constraints, many of which will be affected by projected regional changes in land use and climate. Conclusions On an organizational level, burn window availability and resource limitations constrain prescribed burning practices. More broadly, policy and legal frameworks coupled with trends in urbanization and climate change are expected to interact with operational constraints to challenge managers’ abilities to implement landscape-scale burning strategies and achieve restoration goals. Additional research and engagement with fire managers are needed to investigate opportunities for introducing policy flexibility, leveraging shared management interests, and developing creative solutions to expand burning opportunities. }, number={1}, journal={FIRE ECOLOGY}, author={Kupfer, John A. and Lackstrom, Kirsten and Grego, John M. and Dow, Kirstin and Terando, Adam J. and Hiers, J. Kevin}, year={2022}, month={Nov} } @article{campos-cerqueira_terando_murray_collazo_aide_2021, title={Climate change is creating a mismatch between protected areas and suitable habitats for frogs and birds in Puerto Rico}, volume={7}, ISSN={["1572-9710"]}, DOI={10.1007/s10531-021-02258-9}, abstractNote={AbstractClimate change is altering the spatial distribution of many species around the world. In response, we need to identify and protect suitable areas for a large proportion of the fauna so that they persist through time. This exercise must also evaluate the ability of existing protected areas to provide safe havens for species in the context of climate change. Here, we combined passive acoustic monitoring, semi-automatic species identification models, and species distribution models of 21 bird and frog species based on past (1980–1989), present (2005–2014), and future (2040–2060) climate scenarios to determine how species distributions relate to the current distribution of protected areas in Puerto Rico. Species detection/non-detection data were acquired across ~ 700 sampling sites. We developed always-suitable maps that characterized suitable habitats in all three time periods for each species and overlaid these maps to identify regions with high species co-occurrence. These distributions were then compared with the distribution of existing protected areas. We show that Puerto Rico is projected to become dryer by 2040–2060, and precipitation in the warmest quarter was among the most important variables affecting bird and frog distributions. A large portion of always-suitable areas (ASA) is outside of protected areas (> 80%), and the percent of protected areas that overlaps with always-suitable areas is larger for bird (75%) than frog (39%) species. Our results indicate that present protected areas will not suffice to safeguard bird and frog species under climate change; however, the establishment of larger protected areas, buffer zones, and connectivity between protected areas may allow species to find suitable niches to withstand environmental changes.}, journal={BIODIVERSITY AND CONSERVATION}, author={Campos-Cerqueira, Marconi and Terando, Adam J. and Murray, Brent A. and Collazo, Jaime A. and Aide, T. Mitchell}, year={2021}, month={Jul} } @article{rivera-burgos_collazo_terando_pacifici_2021, title={Linking demographic rates to local environmental conditions: Empirical data to support climate adaptation strategies for Eleutherodactylus frogs}, volume={28}, ISSN={["2351-9894"]}, url={https://doi.org/10.1016/j.gecco.2021.e01624}, DOI={10.1016/j.gecco.2021.e01624}, abstractNote={Conducting managed species translocations and establishing climate change refugia are adaptation strategies to cope with projected consequences of global warming, but successful implementation requires on-the-ground validation of demographic responses to transient climate conditions. Here we estimated the effect of nine abiotic and biotic factors on local occupancy and an index of abundance (few or chorus) for four amphibian species (Eleutherodactylus wightmanae, E. brittoni, E. antillensis, and E. coqui) in Puerto Rico, USA. We also assessed how the same factors influenced reproductive activity of E. coqui and how species responded to hurricane María (20 September 2017). As predicted, occupancy and abundance of E. wightmanae, E. brittoni and E. coqui were positively and strongly influenced by abiotic covariates (e.g., relative humidity) that characterize high elevation, mesic habitats. E. antillensis exhibited the opposite pattern, with highest probabilities (≥0.6) recorded at ≤300 m and with average relative humidity<75%. Biotic covariates (e.g., canopy cover) had a weak influence on both parameters, regardless of species. High probabilities (≥0.9) of detecting an E. coqui chorus and active nests occurred at sites experiencing average relative humidity of>80% and temperature of ≤26 °C. Moderate to high probabilities of detecting a chorus (0.4–0.7) were recorded at sites with average temperatures>26 °C, but no reproductive activity was detected, implying that monitoring abundance alone could misrepresent the capacity of a local population to sustain itself. The possibility underscores the importance of understanding the interplay between local demographic and environmental parameters in the advent of global warming to help guide monitoring and management decisions, especially for high elevation specialists. Hurricanes can inflict marked reductions in population numbers, but impacts vary by location and species. We found that the abundance (chorus) of E. antillensis and E. brittoni increased after the hurricane, but the abundance of the other two species did not differ between years. Lack of impacts was probably mediated by low structural damage to forest tracts (e.g., 9% canopy loss). Our findings help assess habitat suitability in terms of parameters that foster local population growth, which provides a basis for testing spatio-temporal predictions about demographic rates in potential climate refugia and for designing criteria to help guide managed translocations.}, journal={GLOBAL ECOLOGY AND CONSERVATION}, publisher={Elsevier BV}, author={Rivera-Burgos, Ana C. and Collazo, Jaime A. and Terando, Adam J. and Pacifici, Krishna}, year={2021}, month={Aug} } @article{gao_terando_kupfer_varner_stambaugh_lei_hiers_2021, title={Robust projections of future fire probability for the conterminous United States}, volume={789}, ISSN={["1879-1026"]}, DOI={10.1016/j.scitotenv.2021.147872}, abstractNote={Globally increasing wildfires have been attributed to anthropogenic climate change. However, providing decision makers with a clear understanding of how future planetary warming could affect fire regimes is complicated by confounding land use factors that influence wildfire and by uncertainty associated with model simulations of climate change. We use an ensemble of statistically downscaled Global Climate Models in combination with the Physical Chemistry Fire Frequency Model (PC2FM) to project changing potential fire probabilities in the conterminous United States for two scenarios representing lower (RCP 4.5) and higher (RCP 8.5) greenhouse gas emission futures. PC2FM is a physically-based and scale-independent model that predicts mean fire return intervals from both fire reactant and reaction variables, which are largely dependent on a locale's climate. Our results overwhelmingly depict increasing potential fire probabilities across the conterminous US for both climate scenarios. The primary mechanism for the projected increases is rising temperatures, reflecting changes in the chemical reaction environment commensurate with enhanced photosynthetic rates and available thermal molecular energy. Existing high risk areas, such as the Cascade Range and the Coastal California Mountains, are projected to experience greater annual fire occurrence probabilities, with relative increases of 122% and 67%, respectively, under RCP 8.5 compared to increases of 63% and 38% under RCP 4.5. Regions not currently associated with frequently occurring wildfires, such as New England and the Great Lakes, are projected to experience a doubling of occurrence probabilities by 2100 under RCP 8.5. This high resolution, continental-scale modeling study of climate change impacts on potential fire probability accounts for shifting background environmental conditions across regions that will interact with topographic drivers to significantly alter future fire probabilities. The ensemble modeling approach presents a useful planning tool for mitigation and adaptation strategies in regions of increasing wildfire risk.}, journal={SCIENCE OF THE TOTAL ENVIRONMENT}, author={Gao, Peng and Terando, Adam J. and Kupfer, John A. and Varner, J. Morgan and Stambaugh, Michael C. and Lei, Ting L. and Hiers, J. Kevin}, year={2021}, month={Oct} } @article{louthan_walters_terando_garcia_morris_2021, title={Shifting correlations among multiple aspects of weather complicate predicting future demography of a threatened species}, volume={12}, ISSN={["2150-8925"]}, DOI={10.1002/ecs2.3740}, abstractNote={AbstractMost studies of the ecological effects of climate change consider only a limited number of weather drivers that could affect populations, though we know that multiple weather drivers can simultaneously affect population growth rate. Multiple drivers could simultaneously increase/decrease one vital rate, or one may increase a vital rate while another decreases the same vital rate. Considering the impact of multiple weather drivers on vital rates is particularly important in a changing climate, in which correlations among drivers may not be preserved in the future. We used a long‐term dataset on the endangered red‐cockaded woodpecker (Dryobates borealis) to understand how multiple weather drivers jointly affect survival and reproductive vital rates and then assessed the contributions of individual weather drivers to historical trends in vital rates over time. We found that vital rates were often influenced by more than one weather driver and that weather drivers most commonly exerted opposing effects. For instance, some weather drivers increased vital rates over time, while others acted in the opposite direction, decreasing vital rates over time. Importantly, the historical correlations among weather drivers are almost always projected to change in the future climate, such that future trends in vital rates may not match historical trends. For example, we do not find historical trends in adult survival, but changing correlations among weather drivers could generate future trends in this vital rate. Our work provides an example of how multiple weather drivers can control a variety of vital rates and also illustrates how changes in the correlation structure of weather drivers through time might substantially affect future trends in individual and population performance.}, number={9}, journal={ECOSPHERE}, author={Louthan, Allison M. and Walters, Jeffrey R. and Terando, Adam J. and Garcia, Victoria and Morris, William F.}, year={2021}, month={Sep} } @article{kupfer_terando_gao_teske_hiers_2020, title={Climate change projected to reduce prescribed burning opportunities in the south-eastern United States}, volume={29}, ISSN={["1448-5516"]}, DOI={10.1071/WF19198}, abstractNote={ Prescribed burning is a critical tool for managing wildfire risks and meeting ecological objectives, but its safe and effective application requires that specific meteorological criteria (a ‘burn window’) are met. Here, we evaluate the potential impacts of projected climatic change on prescribed burning in the south-eastern United States by applying a set of burn window criteria that capture temperature, relative humidity and wind speed to projections from an ensemble of Global Climate Models under two greenhouse gas emission scenarios. Regionally, the percentage of suitable days for burning changes little during winter but decreases substantially in summer owing to rising temperatures by the end of the 21st century compared with historical conditions. Management implications of such changes for six representative land management units include seasonal shifts in burning opportunities from summer to cool-season months, but with considerable regional variation. We contend that the practical constraints of rising temperatures on prescribed fire activities represent a significant future challenge and show that even meeting basic burn criteria (as defined today) will become increasingly difficult over time, which speaks to the need for adaptive management strategies to prepare for such changes. }, number={9}, journal={INTERNATIONAL JOURNAL OF WILDLAND FIRE}, author={Kupfer, John A. and Terando, Adam J. and Gao, Peng and Teske, Casey and Hiers, J. Kevin}, year={2020}, pages={764–778} } @misc{terando_hiers_williams_goodrick_o'brien_2021, title={Is there a dry season in the Southeast US?}, volume={27}, ISSN={["1365-2486"]}, DOI={10.1111/gcb.15399}, abstractNote={Fill et al., (2019; F19) reported significant increases in dry season length (DSL) over the past 120 years (1897-2017) in the Southeast US, a region associated with a frequent fire regime. However, a well-defined dry season is typically more closely associated with the sub-tropical climate of Peninsular Florida (Peninsular Florida; Beckage et al., 2006). Using historical weather station observations scaled to 21 climate divisions, F19 reported significantly increasing DSLs in all but one climate division, and an astonishing 156-day trend increase in DSL in Texas.}, number={4}, journal={GLOBAL CHANGE BIOLOGY}, author={Terando, Adam and Hiers, John Kevin and Williams, Marcus and Goodrick, Scott L. and O'Brien, Joseph J.}, year={2021}, month={Feb}, pages={713–715} } @article{clement_nichols_collazo_terando_hines_williams_2019, title={Partitioning global change: Assessing the relative importance of changes in climate and land cover for changes in avian distribution}, volume={9}, ISBN={2045-7758}, url={https://doi.org/10.1002/ece3.4890}, DOI={10.1002/ece3.4890}, abstractNote={AbstractUnderstanding the relative impact of climate change and land cover change on changes in avian distribution has implications for the future course of avian distributions and appropriate management strategies. Due to the dynamic nature of climate change, our goal was to investigate the processes that shape species distributions, rather than the current distributional patterns. To this end, we analyzed changes in the distribution of Eastern Wood Pewees (Contopus virens) and Red‐eyed Vireos (Vireo olivaceus) from 1997 to 2012 using Breeding Bird Survey data and dynamic correlated‐detection occupancy models. We estimated the local colonization and extinction rates of these species in relation to changes in climate (hours of extreme temperature) and changes in land cover (amount of nesting habitat). We fit six nested models to partition the deviance explained by spatial and temporal components of land cover and climate. We isolated the temporal components of environmental variables because this is the essence of global change. For both species, model fit was significantly improved when we modeled vital rates as a function of spatial variation in climate and land cover. Model fit improved only marginally when we added temporal variation in climate and land cover to the model. Temporal variation in climate explained more deviance than temporal variation in land cover, although both combined only explained 20% (Eastern Wood Pewee) and 6% (Red‐eyed Vireo) of temporal variation in vital rates. Our results showing a significant correlation between initial occupancy and environmental covariates are consistent with biological expectation and previous studies. The weak correlation between vital rates and temporal changes in covariates indicated that we have yet to identify the most relevant components of global change influencing the distributions of these species and, more importantly, that spatially significant covariates are not necessarily driving temporal shifts in avian distributions.}, number={4}, journal={ECOLOGY AND EVOLUTION}, publisher={Wiley}, author={Clement, Matthew J. and Nichols, James D. and Collazo, Jaime A. and Terando, Adam J. and Hines, James E. and Williams, Steven G.}, year={2019}, month={Feb}, pages={1985–2003} } @article{terando_prado_youngsteadt_2018, title={Construction of a Compact Low-Cost Radiation Shield for Air-Temperature Sensors in Ecological Field Studies}, ISSN={["1940-087X"]}, DOI={10.3791/58273}, abstractNote={Low cost temperature sensors are increasingly used by ecologists to assess climatic variation and change on ecologically relevant scales. Although cost-effective, if not deployed with proper solar radiation shielding, the observations recorded from these sensors will be biased and inaccurate. Manufactured radiation shields are effective at minimizing this bias, but are expensive compared to the cost of these sensors. Here, we provide a detailed methodology for constructing a compact version of a previously described custom fabricated radiation shield, which is more accurate than other published shielding methods that attempt to minimize shield size or construction costs. The method requires very little material: corrugated plastic sheets, aluminum foil duct tape, and cable ties. One 15 cm and two 10 cm squares of corrugated plastic are used for each shield. After cutting, scoring, taping and stapling of the sheets, the 10 cm squares form the bottom two layers of the solar radiation shield, while the 15 cm square forms the top layer. The three sheets are held together with cable ties. This compact solar radiation shield can be suspended, or placed against any flat surface. Care must be taken to ensure that the shield is completely parallel to the ground to prevent direct solar radiation from reaching the sensor, possibly causing increased warm biases in sun-exposed sites in the morning and afternoon relative to the original, larger design. Even so, differences in recorded temperatures between the smaller, compact shield design and the original design were small (mean daytime bias = 0.06 °C). Construction costs are less than half of the original shield design, and the new design results in a less conspicuous instrument that may be advantageous in many field ecology settings.}, number={141}, journal={JOVE-JOURNAL OF VISUALIZED EXPERIMENTS}, author={Terando, Adam J. and Prado, Sara G. and Youngsteadt, Elsa}, year={2018}, month={Nov} } @article{bhardwaj_misra_mishra_wootten_boyles_bowden_terando_2018, title={Downscaling future climate change projections over Puerto Rico using a non-hydrostatic atmospheric model}, volume={147}, ISSN={["1573-1480"]}, url={http://dx.doi.org/10.1007/s10584-017-2130-x}, DOI={10.1007/s10584-017-2130-x}, number={1-2}, journal={CLIMATIC CHANGE}, author={Bhardwaj, Amit and Misra, Vasubandhu and Mishra, Akhilesh and Wootten, Adrienne and Boyles, Ryan and Bowden, J. H. and Terando, Adam J.}, year={2018}, month={Mar}, pages={133–147} } @article{collazo_terando_engman_fackler_kwak_2019, title={Toward a Resilience-Based Conservation Strategy for Wetlands in Puerto Rico: Meeting Challenges Posed by Environmental Change}, volume={39}, ISSN={["1943-6246"]}, url={https://doi.org/10.1007/s13157-018-1080-z}, DOI={10.1007/s13157-018-1080-z}, number={6}, journal={WETLANDS}, publisher={Springer Science and Business Media LLC}, author={Collazo, Jaime A. and Terando, Adam J. and Engman, Augustin C. and Fackler, Paul F. and Kwak, Thomas J.}, year={2019}, month={Dec}, pages={1255–1269} } @article{wootten_terando_reich_boyles_semazzi_2017, title={Characterizing Sources of Uncertainty from Global Climate Models and Downscaling Techniques}, volume={56}, ISSN={["1558-8432"]}, DOI={10.1175/jamc-d-17-0087.1}, abstractNote={AbstractIn recent years, climate model experiments have been increasingly oriented toward providing information that can support local and regional adaptation to the expected impacts of anthropogenic climate change. This shift has magnified the importance of downscaling as a means to translate coarse-scale global climate model (GCM) output to a finer scale that more closely matches the scale of interest. Applying this technique, however, introduces a new source of uncertainty into any resulting climate model ensemble. Here a method is presented, on the basis of a previously established variance decomposition method, to partition and quantify the uncertainty in climate model ensembles that is attributable to downscaling. The method is applied to the southeastern United States using five downscaled datasets that represent both statistical and dynamical downscaling techniques. The combined ensemble is highly fragmented, in that only a small portion of the complete set of downscaled GCMs and emission scenarios is typically available. The results indicate that the uncertainty attributable to downscaling approaches ~20% for large areas of the Southeast for precipitation and ~30% for extreme heat days (>35°C) in the Appalachian Mountains. However, attributable quantities are significantly lower for time periods when the full ensemble is considered but only a subsample of all models is available, suggesting that overconfidence could be a serious problem in studies that employ a single set of downscaled GCMs. This article concludes with recommendations to advance the design of climate model experiments so that the uncertainty that accrues when downscaling is employed is more fully and systematically considered.}, number={12}, journal={JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY}, author={Wootten, A. and Terando, A. and Reich, B. J. and Boyles, R. P. and Semazzi, F.}, year={2017}, month={Dec}, pages={3245–3262} } @misc{schwartz_hiers_davis_garfin_jackson_terando_woodhouse_morelli_williamson_brunson_2017, title={Developing a translational ecology workforce}, volume={15}, ISSN={["1540-9309"]}, DOI={10.1002/fee.1732}, abstractNote={We define a translational ecologist as a professional ecologist with diverse disciplinary expertise and skill sets, as well as a suitable personal disposition, who engages across social, professional, and disciplinary boundaries to partner with decision makers to achieve practical environmental solutions. Becoming a translational ecologist requires specific attention to obtaining critical non‐scientific disciplinary breadth and skills that are not typically gained through graduate‐level education. Here, we outline a need for individuals with broad training in interdisciplinary skills, use our personal experiences as a basis for assessing the types of interdisciplinary skills that would benefit potential translational ecologists, and present steps that interested ecologists may take toward becoming translational. Skills relevant to translational ecologists may be garnered through personal experiences, informal training, short courses, fellowships, and graduate programs, among others. We argue that a translational ecology workforce is needed to bridge the gap between science and natural resource decisions. Furthermore, we argue that this task is a cooperative responsibility of individuals interested in pursuing these careers, educational institutions interested in training scientists for professional roles outside of academia, and employers seeking to hire skilled workers who can foster stakeholder‐engaged decision making.}, number={10}, journal={FRONTIERS IN ECOLOGY AND THE ENVIRONMENT}, author={Schwartz, Mark W. and Hiers, J. Kevin and Davis, Frank W. and Garfin, Gregg M. and Jackson, Stephen T. and Terando, Adam J. and Woodhouse, Connie A. and Morelli, Toni Lyn and Williamson, Matthew A. and Brunson, Mark W.}, year={2017}, month={Dec}, pages={587–596} } @inbook{terando_reich_pacifici_costanza_mckerrow_collazo_2017, title={Uncertainty Quantification and Propagation for Projections of Extremes in Monthly Area Burned Under Climate Change: A Case Study in the Coastal Plain of Georgia, USA}, volume={223}, ISBN={0}, ISSN={2328-8779}, url={http://dx.doi.org/10.1002/9781119028116.ch16}, DOI={10.1002/9781119028116.ch16}, abstractNote={Human-caused climate change is predicted to affect the frequency of hazard-linked extremes. Unusually large wildfires are a type of extreme event that is constrained by climate and can be a hazard to society but also an important ecological disturbance. This chapter focuses on changes in the frequency of extreme monthly area burned by wildfires for the end of the 21st century for a wildfire-prone region in the southeast United States. Predicting changes in area burned is complicated by the large and varied uncertainties in how the climate will change and in the models used to predict those changes. The chapter characterizes and quantifies multiple sources of uncertainty and propagate the expanded prediction intervals of future area burned. It illustrates that while accounting for multiple sources of uncertainty in global change science problems is a difficult task, it will be necessary in order to properly assess the risk of increased exposure to these society-relevant events.}, booktitle={NATURAL HAZARD UNCERTAINTY ASSESSMENT: MODELING AND DECISION SUPPORT}, publisher={John Wiley & Sons, Inc.}, author={Terando, Adam J. and Reich, Brian and Pacifici, Krishna and Costanza, Jennifer and McKerrow, Alexa and Collazo, Jaime A.}, year={2017}, pages={245–256} } @article{costanza_terando_mckerrow_collazo_2015, title={Modeling climate change, urbanization, and fire effects on Pinus palustris ecosystems of the southeastern U.S.}, volume={151}, ISSN={0301-4797}, url={http://dx.doi.org/10.1016/j.jenvman.2014.12.032}, DOI={10.1016/j.jenvman.2014.12.032}, abstractNote={Managing ecosystems for resilience and sustainability requires understanding how they will respond to future anthropogenic drivers such as climate change and urbanization. In fire-dependent ecosystems, predicting this response requires a focus on how these drivers will impact fire regimes. Here, we use scenarios of climate change, urbanization and management to simulate the future dynamics of the critically endangered and fire-dependent longleaf pine (Pinus palustris) ecosystem. We investigated how climate change and urbanization will affect the ecosystem, and whether the two conservation goals of a 135% increase in total longleaf area and a doubling of fire-maintained open-canopy habitat can be achieved in the face of these drivers. Our results show that while climatic warming had little effect on the wildfire regime, and thus on longleaf pine dynamics, urban growth led to an 8% reduction in annual wildfire area. The management scenarios we tested increase the ecosystem's total extent by up to 62% and result in expansion of open-canopy longleaf by as much as 216%, meeting one of the two conservation goals for the ecosystem. We find that both conservation goals for this ecosystem, which is climate-resilient but vulnerable to urbanization, are only attainable if a greater focus is placed on restoration of non-longleaf areas as opposed to maintaining existing longleaf stands. Our approach demonstrates the importance of accounting for multiple relevant anthropogenic threats in an ecosystem-specific context in order to facilitate more effective management actions.}, journal={Journal of Environmental Management}, publisher={Elsevier BV}, author={Costanza, Jennifer K. and Terando, Adam J. and McKerrow, Alexa J. and Collazo, Jaime A.}, year={2015}, month={Mar}, pages={186–199} } @article{youngsteadt_dale_terando_dunn_frank_2015, title={Do cities simulate climate change? A comparison of herbivore response to urban and global warming}, volume={21}, ISSN={["1365-2486"]}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-84916930773&partnerID=MN8TOARS}, DOI={10.1111/gcb.12692}, abstractNote={AbstractCities experience elevated temperature, CO2, and nitrogen deposition decades ahead of the global average, such that biological response to urbanization may predict response to future climate change. This hypothesis remains untested due to a lack of complementary urban and long‐term observations. Here, we examine the response of an herbivore, the scale insect Melanaspis tenebricosa, to temperature in the context of an urban heat island, a series of historical temperature fluctuations, and recent climate warming. We survey M. tenebricosa on 55 urban street trees in Raleigh, NC, 342 herbarium specimens collected in the rural southeastern United States from 1895 to 2011, and at 20 rural forest sites represented by both modern (2013) and historical samples. We relate scale insect abundance to August temperatures and find that M. tenebricosa is most common in the hottest parts of the city, on historical specimens collected during warm time periods, and in present‐day rural forests compared to the same sites when they were cooler. Scale insects reached their highest densities in the city, but abundance peaked at similar temperatures in urban and historical datasets and tracked temperature on a decadal scale. Although urban habitats are highly modified, species response to a key abiotic factor, temperature, was consistent across urban and rural‐forest ecosystems. Cities may be an appropriate but underused system for developing and testing hypotheses about biological effects of climate change. Future work should test the applicability of this model to other groups of organisms.}, number={1}, journal={GLOBAL CHANGE BIOLOGY}, author={Youngsteadt, Elsa and Dale, Adam G. and Terando, Adam J. and Dunn, Robert R. and Frank, Steven D.}, year={2015}, month={Jan}, pages={97–105} } @article{terando_costanza_belyea_dunn_mckerrow_collazo_2014, title={The Southern Megalopolis: Using the Past to Predict the Future of Urban Sprawl in the Southeast U.S}, volume={9}, ISSN={1932-6203}, url={http://dx.doi.org/10.1371/journal.pone.0102261}, DOI={10.1371/journal.pone.0102261}, abstractNote={The future health of ecosystems is arguably as dependent on urban sprawl as it is on human-caused climatic warming. Urban sprawl strongly impacts the urban ecosystems it creates and the natural and agro-ecosystems that it displaces and fragments. Here, we project urban sprawl changes for the next 50 years for the fast-growing Southeast U.S. Previous studies have focused on modeling population density, but the urban extent is arguably as important as population density per se in terms of its ecological and conservation impacts. We develop simulations using the SLEUTH urban growth model that complement population-driven models but focus on spatial pattern and extent. To better capture the reach of low-density suburban development, we extend the capabilities of SLEUTH by incorporating street-network information. Our simulations point to a future in which the extent of urbanization in the Southeast is projected to increase by 101% to 192%. Our results highlight areas where ecosystem fragmentation is likely, and serve as a benchmark to explore the challenging tradeoffs between ecosystem health, economic growth and cultural desires.}, number={7}, journal={PLoS ONE}, publisher={Public Library of Science (PLoS)}, author={Terando, Adam J. and Costanza, Jennifer and Belyea, Curtis and Dunn, Robert R. and McKerrow, Alexa and Collazo, Jaime A.}, editor={Layman, Craig A.Editor}, year={2014}, month={Jul}, pages={e102261} } @article{terando_keller_easterling_2012, title={Probabilistic projections of agro-climate indices in North America}, volume={117}, ISSN={["2169-8996"]}, DOI={10.1029/2012jd017436}, abstractNote={We develop probabilistic projections for three agro‐climate indices (frost days, thermal time, and a heat stress index) for North America. The selected indices are important for understanding the potential impacts of future anthropogenic climate change on agricultural production. We use Bayesian Model Averaging (BMA) and bootstrapping to quantify the structural uncertainty in an ensemble of downscaled General Circulation Models (GCMs). The prior information contained in the observations and model hindcasts is used to construct physically meaningful temporal comparisons for the period 1961–2010. The comparisons are used to derive model‐specific posterior weights to construct probabilistic projections of agro‐climate change in the 21st century. A cross validation test covering the most recent 25 years of the observation period indicates considerable overconfidence in the projections when using the calibrated BMA approach. In contrast the probabilistic projections using equally weighted climate models are not overconfident. The strong consensus among the probabilistic projections that shows warming effects for all three agro‐climate indices is tempered by the short 50‐year calibration period and the small ensemble size. The short calibration period provides a relatively poor observational constraint on estimates of model weights and predictive variance, while the small ensemble size limits the climate sample space. However, the consensus that emerges in spite of the large uncertainties suggests large potential changes in the conditions that farmers will experience over the remainder of the 21st century. Of particular concern is the projected increase in the heat stress index which could lead to large crop damages and associated yield declines.}, journal={JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES}, author={Terando, Adam and Keller, Klaus and Easterling, William E.}, year={2012}, month={Apr} } @article{bhat_haran_terando_keller_2011, title={Climate Projections Using Bayesian Model Averaging and Space-Time Dependence}, volume={16}, ISSN={["1537-2693"]}, DOI={10.1007/s13253-011-0069-3}, number={4}, journal={JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS}, author={Bhat, K. Sham and Haran, Murali and Terando, Adam and Keller, Klaus}, year={2011}, month={Dec}, pages={606–628} } @article{cook_terando_steiner_2010, title={Ecological forecasting under climatic data uncertainty: a case study in phenological modeling}, volume={5}, ISSN={["1748-9326"]}, DOI={10.1088/1748-9326/5/4/044014}, abstractNote={Forecasting ecological responses to climate change represents a challenge to the ecological community because models are often site-specific and climate data are lacking at appropriate spatial and temporal resolutions. We use a case study approach to demonstrate uncertainties in ecological predictions related to the driving climatic input data. We use observational records, derived observational datasets (e.g. interpolated observations from local weather stations and gridded data products) and output from general circulation models (GCM) in conjunction with site based phenology models to estimate the first flowering date (FFD) for three woody flowering species. Using derived observations over the modern time period, we find that cold biases and temperature trends lead to biased FFD simulations for all three species. Observational datasets resolved at the daily time step result in better FFD predictions compared to simulations using monthly resolution. Simulations using output from an ensemble of GCM and regional climate models over modern and future time periods have large intra-ensemble spreads and tend to underestimate observed FFD trends for the modern period. These results indicate that certain forcing datasets may be missing key features needed to generate accurate hindcasts at the local scale (e.g. trends, temporal resolution), and that standard modeling techniques (e.g. downscaling, ensemble mean, etc) may not necessarily improve the prediction of the ecological response. Studies attempting to simulate local ecological processes under modern and future climate forcing therefore need to quantify and propagate the climate data uncertainties in their simulations.}, number={4}, journal={ENVIRONMENTAL RESEARCH LETTERS}, author={Cook, Benjamin I. and Terando, Adam and Steiner, Allison}, year={2010} } @article{chhetri_easterling_terando_mearns_2010, title={Modeling Path Dependence in Agricultural Adaptation to Climate Variability and Change}, volume={100}, ISSN={["1467-8306"]}, DOI={10.1080/00045608.2010.500547}, abstractNote={Path dependence of farmers’ technical choices for managing climate risk combined with farmers’ difficulties in discerning climate change from natural variability might hamper adaptation to climate change. We examine the effects of climate variability and change on corn yields in the Southeast United States using a regional climate model nested within a global climate model (GCM) simulation of the equilibrium atmospheric CO2 concentration of 540 ppm. In addition to a climate scenario with normal variance, we modify the GCM outputs to simulate a scenario with a highly variable climate. We find that climate variability poses a serious challenge to the abilities of farmers and their supporting institutions to adapt. Consistently lower corn yields, especially in the scenario with a highly variable climate, illustrate that farmers’ abilities to make informed choices about their cropping decisions can be constrained by their inabilities to exit from their current technological regimes or path dependence. We also incorporate farmers’ responses to climate change using three adaptation scenarios: no adaptation, “perfect knowledge,” and a scenario that mimics diffusion of knowledge across the landscape. Regardless of adaptation scenario and variance structure, the most common result is a decline in corn production to the point where yield reductions of 1 percent to 20 percent occur across 60 percent to 80 percent of the region. The advantage of the perfect knowledge adaptation scenario declines through time compared to the diffusion-process adaptation scenario. We posit that the cost of path dependence to farmers, in the form of yield reductions, is likely unavoidable because the inherent variability of the climate system will result in adaptation choices that will be suboptimal for some years.}, number={4}, journal={ANNALS OF THE ASSOCIATION OF AMERICAN GEOGRAPHERS}, author={Chhetri, Netra B. and Easterling, William E. and Terando, Adam and Mearns, Linda}, year={2010}, pages={894–907} }