@article{tyson_ceric_guag_nemser_borenstein_slavic_lippert_mcdowell_krishnamurthy_korosec_et al._2021, title={Genomics accurately predicts antimicrobial resistance in Staphylococcus pseudintermedius collected as part of Vet-LIRN resistance monitoring}, volume={254}, ISSN={["1873-2542"]}, DOI={10.1016/j.vetmic.2021.109006}, abstractNote={Whole-genome sequencing (WGS) has changed our understanding of bacterial pathogens, aiding outbreak investigations and advancing our knowledge of their genetic features. However, there has been limited use of genomics to understand antimicrobial resistance of veterinary pathogens, which would help identify emerging resistance mechanisms and track their spread. The objectives of this study were to evaluate the correlation between resistance genotypes and phenotypes for Staphylococcus pseudintermedius, a major pathogen of companion animals, by comparing broth microdilution antimicrobial susceptibility testing and WGS. From 2017–2019, we conducted antimicrobial susceptibility testing and WGS on S. pseudintermedius isolates collected from dogs in the United States as a part of the Veterinary Laboratory Investigation and Response Network (Vet-LIRN) antimicrobial resistance monitoring program. Across thirteen antimicrobials in nine classes, resistance genotypes correlated with clinical resistance phenotypes 98.4 % of the time among a collection of 592 isolates. Our findings represent isolates from diverse lineages based on phylogenetic analyses, and these strong correlations are comparable to those from studies of several human pathogens such as Staphylococcus aureus and Salmonella enterica. We uncovered some important findings, including that 32.3 % of isolates had the mecA gene, which correlated with oxacillin resistance 97.0 % of the time. We also identified a novel rpoB mutation likely encoding rifampin resistance. These results show the value in using WGS to assess antimicrobial resistance in veterinary pathogens and to reveal putative new mechanisms of resistance.}, journal={VETERINARY MICROBIOLOGY}, author={Tyson, Gregory H. and Ceric, Olgica and Guag, Jake and Nemser, Sarah and Borenstein, Stacey and Slavic, Durda and Lippert, Sarah and McDowell, Rebecca and Krishnamurthy, Aparna and Korosec, Shannon and et al.}, year={2021}, month={Mar} } @article{brackett_melander_an_krishnamurthy_thompson_cavanagh_melander_2014, title={Small-Molecule Suppression of beta-Lactam Resistance in Multidrug-Resistant Gram-Negative Pathogens}, volume={57}, ISSN={["1520-4804"]}, DOI={10.1021/jm501050e}, abstractNote={Recent efforts toward combating antibiotic resistance in bacteria have focused on Gram-positive bacteria; however, multidrug-resistant Gram-negative bacteria pose a significant risk to public health. An orthogonal approach to the development of new antibiotics is to develop adjuvant compounds that enhance the susceptibility of drug-resistant strains of bacteria to currently approved antibiotics. This paper describes the synthesis and biological activity of a library of aryl amide 2-aminoimidazoles based on a lead structure from an initial screen. A small molecule was identified from this library that is capable of lowering the minimum inhibitory concentration of β-lactam antibiotics by up to 64-fold.}, number={17}, journal={JOURNAL OF MEDICINAL CHEMISTRY}, author={Brackett, Christopher M. and Melander, Roberta J. and An, Il Hwan and Krishnamurthy, Aparna and Thompson, Richele J. and Cavanagh, John and Melander, Christian}, year={2014}, month={Sep}, pages={7450–7458} }