@misc{manesh_willard_lewis_kelly_2024, title={Extremely thermoacidophilic archaea for metal bioleaching: What do their genomes tell Us?}, volume={391}, ISSN={["1873-2976"]}, DOI={10.1016/j.biortech.2023.129988}, abstractNote={Elevated temperatures favor bioleaching processes through faster kinetics, more favorable mineral chemistry, lower cooling requirements, and less surface passivation. Extremely thermoacidophilic archaea from the order Sulfolobales exhibit novel mechanisms for bioleaching metals from ores and have great potential. Genome sequences of many extreme thermoacidophiles are now available and provide new insights into their biochemistry, metabolism, physiology and ecology as these relate to metal mobilization from ores. Although there are some molecular genetic tools available for extreme thermoacidophiles, further development of these is sorely needed to advance the study and application of these archaea for bioleaching applications. The evolving landscape for bioleaching technologies at high temperatures merits a closer look through a genomic lens at what is currently possible and what lies ahead in terms of new developments and emerging opportunities. The need for critical metals and the diminishing primary deposits for copper should provide incentives for high temperature bioleaching.}, journal={BIORESOURCE TECHNOLOGY}, author={Manesh, Mohamad J. H. and Willard, Daniel J. and Lewis, April M. and Kelly, Robert M.}, year={2024}, month={Jan} } @article{cooper_lewis_notey_mukherjee_willard_blum_kelly_2023, title={Interplay between transcriptional regulators and VapBC toxin-antitoxin loci during thermal stress response in extremely thermoacidophilic archaea}, volume={2}, ISSN={["1462-2920"]}, DOI={10.1111/1462-2920.16350}, abstractNote={Abstract}, journal={ENVIRONMENTAL MICROBIOLOGY}, author={Cooper, Charlotte R. and Lewis, April M. and Notey, Jaspreet S. and Mukherjee, Arpan and Willard, Daniel J. and Blum, Paul H. and Kelly, Robert M.}, year={2023}, month={Feb} } @article{lewis_willard_manesh_sivabalasarma_albers_kelly_2023, title={Stay or Go: Sulfolobales Biofilm Dispersal Is Dependent on a Bifunctional VapB Antitoxin}, volume={4}, ISSN={["2150-7511"]}, DOI={10.1128/mbio.00053-23}, abstractNote={Biofilms allow microbes to resist a multitude of stresses and stay proximate to vital nutrients. The mechanisms of entering and leaving a biofilm are highly regulated to ensure microbial survival, but are not yet well described in archaea.}, journal={MBIO}, author={Lewis, April M. and Willard, Daniel J. and Manesh, Mohamad J. H. J. and Sivabalasarma, Shamphavi and Albers, Sonja-Verena and Kelly, Robert M.}, year={2023}, month={Apr} } @article{lewis_recalde_bräsen_counts_nussbaum_bost_schocke_shen_willard_quax_et al._2021, title={The biology of thermoacidophilic archaea from the order Sulfolobales}, volume={45}, ISSN={1574-6976}, url={http://dx.doi.org/10.1093/femsre/fuaa063}, DOI={10.1093/femsre/fuaa063}, abstractNote={ABSTRACT}, number={4}, journal={FEMS Microbiology Reviews}, publisher={Oxford University Press (OUP)}, author={Lewis, April M and Recalde, Alejandra and Bräsen, Christopher and Counts, James A and Nussbaum, Phillip and Bost, Jan and Schocke, Larissa and Shen, Lu and Willard, Daniel J and Quax, Tessa E F and et al.}, year={2021}, month={Jan} } @article{crosby_laemthong_lewis_straub_adams_kelly_2019, title={Extreme thermophiles as emerging metabolic engineering platforms}, volume={59}, ISSN={0958-1669}, url={http://dx.doi.org/10.1016/j.copbio.2019.02.006}, DOI={10.1016/j.copbio.2019.02.006}, abstractNote={Going forward, industrial biotechnology must consider non-model metabolic engineering platforms if it is to have maximal impact. This will include microorganisms that natively possess strategic physiological and metabolic features but lack either molecular genetic tools or such tools are rudimentary, requiring further development. If non-model platforms are successfully deployed, new avenues for production of fuels and chemicals from renewable feedstocks or waste materials will emerge. Here, the challenges and opportunities for extreme thermophiles as metabolic engineering platforms are discussed.}, journal={Current Opinion in Biotechnology}, publisher={Elsevier BV}, author={Crosby, James R and Laemthong, Tunyaboon and Lewis, April M and Straub, Christopher T and Adams, Michael WW and Kelly, Robert M}, year={2019}, month={Oct}, pages={55–64} }