@article{mainello-land_bibi_gugino_bull_2024, title={Multilocus sequence and phenotypic analysis of Pectobacterium and Dickeya type strains for identification of soft rot Pectobacteriaceae from symptomatic potato stems and tubers in Pennsylvania}, url={http://dx.doi.org/10.1016/j.syapm.2023.126476}, DOI={10.1016/j.syapm.2023.126476}, abstractNote={Outbreaks of potato blackleg and soft rot caused by Pectobacterium species and more recently Dickeya species across the U.S. mid-Atlantic region have caused yield loss due to poor emergence as well as losses from stem and tuber rot. To develop management strategies for soft rot diseases, we must first identify which members of the soft rot Pectobacteriaceae are present in regional potato plantings. However, the rapidly expanding number of soft rot Pectobacteriaceae species and the lack of readily available comparative data for type strains of Pectobacterium and Dickeya hinder quick identification. This manuscript provides a comparative analysis of soft rot Pectobacteriaceae and a comprehensive comparison of type strains from this group using rep-PCR, MLSA and 16S sequence analysis, as well as phenotypic and physiological analyses using Biolog GEN III plates. These data were used to identify isolates cultured from symptomatic potato stems collected between 2016 and 2018. The isolates were characterized for phenotypic traits and by sequence analysis to identify the bacteria from potatoes with blackleg and soft rot symptoms in Pennsylvania potato fields. In this survey, P. actinidiae, P. brasiliense, P. polonicum, P. polaris, P. punjabense, P. parmentieri, and P. versatile were identified from Pennsylvania for the first time. Importantly, the presence of P. actinidiae in Pennsylvania represents the first report of this organism in the U.S. As expected, P. carotorvorum and D. dianthicola were also isolated. In addition to a resource for future work studying the Dickeya and Pectobacterium associated with potato blackleg and soft rot, we provide recommendations for future surveys to monitor for quarantine or emerging soft rot Pectobacteriace regionally.}, journal={Systematic and Applied Microbiology}, author={Mainello-Land, Amanda M. and Bibi, Shaheen and Gugino, Beth and Bull, Carolee}, year={2024}, month={Jan} } @article{furgurson_loschin_butoto_abugu_gillespie_brown_ferraro_speicher_stokes_budnick_et al._2023, title={Seizing the policy moment in crop biotech regulation: an interdisciplinary response to the Executive Order on biotechnology}, volume={11}, ISSN={["2296-4185"]}, DOI={10.3389/fbioe.2023.1241537}, abstractNote={North Carolina State University Forestry and Environmental Resources, Raleigh, NC, United States, North Carolina State University Genetic Engineering and Society Center, Raleigh, NC, United States, North Carolina State University Applied Ecology, Raleigh, NC, United States, North Carolina State University Crop and Soil Sciences, Raleigh, NC, United States, North Carolina State University Horticultural Science, Raleigh, NC, United States, North Carolina State University Entomology and Plant Pathology, Raleigh, NC, United States, North Carolina State University Food, Bioprocessing and Nutrition Sciences, Raleigh, NC, United States, North Carolina State University Agricultural and Resource Economics, Raleigh, NC, United States, North Carolina State University Communication, Rhetoric, and Digital Media, Raleigh, NC, United States, North Carolina State University Biochemistry, Raleigh, NC, United States, North Carolina State University Plant Biology, Raleigh, NC, United States, North Carolina State University Anthropology, Raleigh, NC, United States}, journal={FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY}, author={Furgurson, Jill and Loschin, Nick and Butoto, Eric and Abugu, Modesta and Gillespie, Christopher J. and Brown, Rebekah and Ferraro, Greg and Speicher, Nolan and Stokes, Ruthie and Budnick, Asa and et al.}, year={2023}, month={Aug} } @article{curland_mainello_perry_hao_charkowski_bull_mcnally_johnson_rosenzweig_secor_et al._2021, title={Species of Dickeya and Pectobacterium Isolated during an Outbreak of Blackleg and Soft Rot of Potato in Northeastern and North Central United States}, url={http://dx.doi.org/10.3390/microorganisms9081733}, DOI={10.3390/microorganisms9081733}, abstractNote={An outbreak of bacterial soft rot and blackleg of potato has occurred since 2014 with the epicenter being in the northeastern region of the United States. Multiple species of Pectobacterium and Dickeya are causal agents, resulting in losses to commercial and seed potato production over the past decade in the Northeastern and North Central United States. To clarify the pathogen present at the outset of the epidemic in 2015 and 2016, a phylogenetic study was made of 121 pectolytic soft rot bacteria isolated from symptomatic potato; also included were 27 type strains of Dickeya and Pectobacterium species, and 47 historic reference strains. Phylogenetic trees constructed based on multilocus sequence alignments of concatenated dnaJ, dnaX and gyrB fragments revealed the epidemic isolates to cluster with type strains of D. chrysanthemi, D. dianthicola, D. dadantii, P. atrosepticum, P. brasiliense, P. carotovorum, P. parmentieri, P. polaris, P. punjabense, and P. versatile. Genetic diversity within D. dianthicola strains was low, with one sequence type (ST1) identified in 17 of 19 strains. Pectobacterium parmentieri was more diverse, with ten sequence types detected among 37 of the 2015–2016 strains. This study can aid in monitoring future shifts in potato soft rot pathogens within the U.S. and inform strategies for disease management.}, journal={Microorganisms}, author={Curland, Rebecca and Mainello, Amanda and Perry, Keith L. and Hao, Jianjun and Charkowski, Amy O. and Bull, Carolee T. and McNally, Ryan R. and Johnson, Steven B. and Rosenzweig, Noah and Secor, Gary A. and et al.}, year={2021}, month={Aug} }