@article{chen_jiang_scholle_meo_ohata_gorman_ghiladi_2025, title={InP-Based Quantum Dots as Photosensitizers in Photodynamic Antimicrobial Materials}, volume={1}, ISSN={["2576-6422"]}, url={https://doi.org/10.1021/acsabm.4c01467}, DOI={10.1021/acsabm.4c01467}, abstractNote={Ligand-functionalized InP-based quantum dots (QDs) have been developed as an innovative class of nontoxic photosensitizer suitable for antimicrobial applications, aimed at reducing or preventing pathogen transmission from one host to another via high contact surfaces. A hot injection method followed by functionalization via ligand exchange with 9-anthracene carboxylic acid (ACA) yielded the desired core/shell InP/ZnSe/ZnS QDs. Transmission electron microscopy (TEM) revealed these QDs to be uniform in size (∼3.2 nm), with light absorption across the entire visible spectrum (λmax ∼550 nm). Under light excitation at 550 nm, the generation of singlet oxygen (1O2) was evidenced by its characteristic phosphorescence signal at 1278 nm, indicating successful energy transfer from the QDs to surface-anchored ACA ligands, in accordance with a type II mechanism for a photodynamically generated singlet oxygen. The InP/ZnSe/ZnS core/shell QDs were applied to cellulose via dip coating, and the resultant QDs-loaded material was assessed for antimicrobial photodynamic inactivation (aPDI) of both Gram-positive [methicillin-resistant Staphylococcus aureus (MRSA; ATCC-44), vancomycin-resistant Enterococcus faecium (VRE; ATCC-2320)] and Gram-negative [multidrug-resistant Acinetobacter baumannii (MDRAB; ATCC-1605), NDM-1 positive Klebsiella pneumoniae (KP; ATCC-2146)] bacteria under illumination (400–700 nm; 85 mW/cm2; 90 min). The highest inactivation was observed for MRSA, achieving at least 99.999% inactivation (5 log units). Antiviral photodynamic inactivation on human coronavirus 229E (HCoV-229E) and feline calicivirus (FCV) demonstrated complete viral inactivation (to the detection limit). Cytotoxicity studies showed that the QDs are nontoxic to mammalian cells in the dark. Together, these results confirm the promising potential of ligand-functionalized InP-based QDs to be employed as nontoxic photosensitizers as materials in self-sterilizing surfaces.}, journal={ACS APPLIED BIO MATERIALS}, author={Chen, Lihan and Jiang, Chenyu and Scholle, Frank and Meo, Alissa E. and Ohata, Jun and Gorman, Christopher B. and Ghiladi, Reza A.}, year={2025}, month={Jan} } @article{nuruzzaman_colella_uzoewulu_meo_gross_ishizawa_sana_zhang_hoff_medlock_et al._2024, title={Hexafluoroisopropanol as a Bioconjugation Medium of Ultrafast, Tryptophan-Selective Catalysis}, volume={2}, ISSN={["1520-5126"]}, DOI={10.1021/jacs.3c13447}, abstractNote={The past decade has seen a remarkable growth in the number of bioconjugation techniques in chemistry, biology, material science, and biomedical fields. A core design element in bioconjugation technology is a chemical reaction that can form a covalent bond between the protein of interest and the labeling reagent. Achieving chemoselective protein bioconjugation in aqueous media is challenging, especially for generally less reactive amino acid residues, such as tryptophan. We present here the development of tryptophan-selective bioconjugation methods through ultrafast Lewis acid-catalyzed reactions in hexafluoroisopropanol (HFIP). Structure–reactivity relationship studies have revealed a combination of thiophene and ethanol moieties to give a suitable labeling reagent for this bioconjugation process, which enables modification of peptides and proteins in an extremely rapid reaction unencumbered by noticeable side reactions. The capability of the labeling method also facilitated radiofluorination application as well as antibody functionalization. Enhancement of an α-helix by HFIP leads to its compatibility with a certain protein, and this report also demonstrates a further stabilization strategy achieved by the addition of an ionic liquid to the HFIP medium. The nonaqueous bioconjugation approaches allow access to numerous chemical reactions that are unavailable in traditional aqueous processes and will further advance the chemistry of proteins.}, journal={JOURNAL OF THE AMERICAN CHEMICAL SOCIETY}, author={Nuruzzaman, Mohammad and Colella, Brandon M. and Uzoewulu, Chiamaka P. and Meo, Alissa E. and Gross, Elizabeth J. and Ishizawa, Seiya and Sana, Sravani and Zhang, He and Hoff, Meredith E. and Medlock, Bryce T. W. and et al.}, year={2024}, month={Feb} }