@article{negi_kim_hua_timofeeva_zhang_zhu_peters_kumah_jiang_liu_2023, title={Ferroelectric Domain Wall Engineering Enables Thermal Modulation in PMN-PT Single Crystals}, volume={4}, ISSN={["1521-4095"]}, url={https://doi.org/10.1002/adma.202211286}, DOI={10.1002/adma.202211286}, abstractNote={Acting like thermal resistances, ferroelectric domain walls can be manipulated to realize dynamic modulation of thermal conductivity (k), which is essential for developing novel phononic circuits. Despite the interest, little attention has been paid to achieving room‐temperature thermal modulation in bulk materials due to challenges in obtaining a high thermal conductivity switching ratio (khigh/klow), particularly in commercially viable materials. Here, room‐temperature thermal modulation in 2.5 mm‐thick Pb(Mg1/3Nb2/3)O3–xPbTiO3 (PMN–xPT) single crystals is demonstrated. With the use of advanced poling conditions, assisted by the systematic study on composition and orientation dependence of PMN–xPT, a range of thermal conductivity switching ratios with a maximum of ≈1.27 is observed. Simultaneous measurements of piezoelectric coefficient (d33) to characterize the poling state, domain wall density using polarized light microscopy (PLM), and birefringence change using quantitative PLM reveal that compared to the unpoled state, the domain wall density at intermediate poling states (0< d33}, journal={ADVANCED MATERIALS}, author={Negi, Ankit and Kim, Hwang Pill and Hua, Zilong and Timofeeva, Anastasia and Zhang, Xuanyi and Zhu, Yong and Peters, Kara and Kumah, Divine and Jiang, Xiaoning and Liu, Jun}, year={2023}, month={Apr} } @article{negi_rodriguez_zhang_comstock_yang_sun_jiang_kumah_hu_liu_2023, title={Thickness-Dependent Thermal Conductivity and Phonon Mean Free Path Distribution in Single-Crystalline Barium Titanate}, volume={4}, ISSN={["2198-3844"]}, url={https://doi.org/10.1002/advs.202301273}, DOI={10.1002/advs.202301273}, abstractNote={Nanosized perovskite ferroelectrics are widely employed in several electromechanical, photonics, and thermoelectric applications. Scaling of ferroelectric materials entails a severe reduction in the lattice (phonon) thermal conductivity, particularly at sub‐100 nm length scales. Such thermal conductivity reduction can be accurately predicted using the information of phonon mean free path (MFP) distribution. The current understanding of phonon MFP distribution in perovskite ferroelectrics is still inconclusive despite the critical thermal management implications. Here, high‐quality single‐crystalline barium titanate (BTO) thin films, a representative perovskite ferroelectric material, are grown at several thicknesses. Using experimental thermal conductivity measurements and first‐principles based modeling (including four‐phonon scattering), the phonon MFP distribution is determined in BTO. The simulation results agree with the measured thickness‐dependent thermal conductivity. The results show that the phonons with sub‐100 nm MFP dominate the thermal transport in BTO, and phonons with MFP exceeding 10 nm contribute ≈35% to the total thermal conductivity, in significant contrast to previously published experimental results. The experimentally validated phonon MFP distribution is consistent with the theoretical predictions of other complex crystals with strong anharmonicity. This work paves the way for thermal management in nanostructured and ferroelectric‐domain‐engineered systems for oxide perovskite‐based functional materials.}, journal={ADVANCED SCIENCE}, author={Negi, Ankit and Rodriguez, Alejandro and Zhang, Xuanyi and Comstock, Andrew H. H. and Yang, Cong and Sun, Dali and Jiang, Xiaoning and Kumah, Divine and Hu, Ming and Liu, Jun}, year={2023}, month={Apr} } @article{wu_zhang_negi_he_hu_tian_liu_2020, title={Synergistic Effects of Boron Nitride (BN) Nanosheets and Silver (Ag) Nanoparticles on Thermal Conductivity and Electrical Properties of Epoxy Nanocomposites}, volume={12}, ISSN={["2073-4360"]}, url={https://doi.org/10.3390/polym12020426}, DOI={10.3390/polym12020426}, abstractNote={Polymer composites, with both high thermal conductivity and high electrical insulation strength, are desirable for power equipment and electronic devices, to sustain increasingly high power density and heat flux. However, conventional methods to synthesize polymer composites with high thermal conductivity often degrade their insulation strength, or cause a significant increase in dielectric properties. In this work, we demonstrate epoxy nanocomposites embedded with silver nanoparticles (AgNPs), and modified boron nitride nanosheets (BNNSs), which have high thermal conductivity, high insulation strength, low permittivity, and low dielectric loss. Compared with neat epoxy, the composite with 25 vol% of binary nanofillers has a significant enhancement (~10x) in thermal conductivity, which is twice of that filled with BNNSs only (~5x), owing to the continuous heat transfer path among BNNSs enabled by AgNPs. An increase in the breakdown voltage is observed, which is attributed to BNNSs-restricted formation of AgNPs conducting channels that result in a lengthening of the breakdown path. Moreover, the effects of nanofillers on dielectric properties, and thermal simulated current of nanocomposites, are discussed.}, number={2}, journal={Polymers}, publisher={MDPI AG}, author={Wu, Yunjian and Zhang, Xiaoxing and Negi, Ankit and He, Jixiong and Hu, Guoxiong and Tian, Shuangshuang and Liu, Jun}, year={2020}, month={Feb}, pages={426–439} }