@article{miyazawa_bogdan_hashimoto_tsuji_2019, title={Iron-induced transferrin receptor-1 mRNA destabilization: A response to "Neither miR-7-5p nor miR-141-3p is a major mediator of iron-responsive transferrin receptor-1 mRNA degradation"}, volume={25}, ISSN={["1469-9001"]}, DOI={10.1261/rna.073270.119}, abstractNote={We read with great interest the Divergent Views article by Connell and colleagues disputing our recent publication describing a role for two microRNAs in the iron-mediated regulation of transferrin receptor 1 (TfR1) mRNA stability. Our publication sought to shed light on a long-standing question in the field of cellular iron metabolism, and we welcome commentary and critique. However, there are several critical issues contained in the article by Connell and colleagues that require further consideration. We appreciate the opportunity to reply here.}, number={11}, journal={RNA}, author={Miyazawa, Masaki and Bogdan, Alexander R. and Hashimoto, Kazunori and Tsuji, Yoshiaki}, year={2019}, month={Nov}, pages={1416–1420} } @article{miyazawa_bogdan_tsuji_2019, title={Perturbation of Iron Metabolism by Cisplatin through Inhibition of Iron Regulatory Protein 2}, volume={26}, ISSN={["2451-9448"]}, DOI={10.1016/j.chembiol.2018.10.009}, abstractNote={Cisplatin is classically known to exhibit anticancer activity through DNA damage in the nucleus. Here we found a mechanism by which cisplatin affects iron metabolism, leading to toxicity and cell death. Cisplatin causes intracellular iron deficiency through direct inhibition of the master regulator of iron metabolism, iron regulatory protein 2 (IRP2) with marginal effects on IRP1. Cisplatin, but not carboplatin or transplatin, binds human IRP2 at Cys512 and Cys516 and impairs IRP2 binding to iron-responsive elements of ferritin and transferrin receptor-1 (TfR1) mRNAs. IRP2 inhibition by cisplatin caused ferritin upregulation and TfR1 downregulation leading to sustained intracellular iron deficiency. Cys512/516Ala mutant IRP2 made cells more resistant to cisplatin. Furthermore, combination of cisplatin and the iron chelator desferrioxamine enhanced cytotoxicity through augmented iron depletion in culture and xenograft mouse model. Collectively, cisplatin is an inhibitor of IRP2 that induces intracellular iron deficiency.}, number={1}, journal={CELL CHEMICAL BIOLOGY}, author={Miyazawa, Masaki and Bogdan, Alexander R. and Tsuji, Yoshiaki}, year={2019}, month={Jan}, pages={85-+} } @misc{bogdan_miyazawa_hashimoto_tsuji_2016, title={Regulators of Iron Homeostasis: New Players in Metabolism, Cell Death, and Disease}, volume={41}, ISSN={["1362-4326"]}, DOI={10.1016/j.tibs.2015.11.012}, abstractNote={Iron is necessary for life, but can also cause cell death. Accordingly, cells evolved a robust, tightly regulated suite of genes for maintaining iron homeostasis. Previous mechanistic studies on iron homeostasis have granted insight into the role of iron in human health and disease. We highlight new regulators of iron metabolism, including iron-trafficking proteins [solute carrier family 39, SLC39, also known as ZRT/IRT-like protein, ZIP; and poly-(rC)-binding protein, PCBP] and a cargo receptor (NCOA4) that is crucial for release of ferritin-bound iron. We also discuss emerging roles of iron in apoptosis and a novel iron-dependent cell death pathway termed 'ferroptosis', the dysregulation of iron metabolism in human pathologies, and the use of iron chelators in cancer therapy.}, number={3}, journal={TRENDS IN BIOCHEMICAL SCIENCES}, author={Bogdan, Alexander R. and Miyazawa, Masaki and Hashimoto, Kazunori and Tsuji, Yoshiaki}, year={2016}, month={Mar}, pages={274–286} } @misc{wilson_bogdan_miyazawa_hashimoto_tsuji_2016, title={Siderophores in Iron Metabolism: From Mechanism to Therapy Potential}, volume={22}, ISSN={["1471-499X"]}, DOI={10.1016/j.molmed.2016.10.005}, abstractNote={Iron is an essential nutrient for life. During infection, a fierce battle of iron acquisition occurs between the host and bacterial pathogens. Bacteria acquire iron by secreting siderophores, small ferric iron-binding molecules. In response, host immune cells secrete lipocalin 2 (also known as siderocalin), a siderophore-binding protein, to prevent bacterial reuptake of iron-loaded siderophores. To counter this threat, some bacteria can produce lipocalin 2-resistant siderophores. This review discusses the recently described molecular mechanisms of siderophore iron trafficking between host and bacteria, highlighting the therapeutic potential of exploiting pathogen siderophore machinery for the treatment of antibiotic-resistant bacterial infections. Because the latter reflect a persistent problem in hospital settings, siderophore-targeting or siderophore-based compounds represent a promising avenue to combat such infections.}, number={12}, journal={TRENDS IN MOLECULAR MEDICINE}, author={Wilson, Briana R. and Bogdan, Alexander R. and Miyazawa, Masaki and Hashimoto, Kazunori and Tsuji, Yoshiaki}, year={2016}, month={Dec}, pages={1077–1090} }