@article{ahmed_alarcon_aleksandrova_baeßler_barron-palos_bartoszek_beck_behzadipour_berkutov_bessuille_et al._2019, title={A new cryogenic apparatus to search for the neutron electric dipole moment}, volume={14}, ISSN={1748-0221}, url={http://dx.doi.org/10.1088/1748-0221/14/11/P11017}, DOI={10.1088/1748-0221/14/11/P11017}, abstractNote={A cryogenic apparatus is described that enables a new experiment, nEDM@SNS, with a major improvement in sensitivity compared to the existing limit in the search for a neutron Electric Dipole Moment (EDM). This apparatus uses superfluid 4He to produce a high density of Ultra-Cold Neutrons (UCN) which are contained in a suitably coated pair of measurement cells. The experiment, to be operated at the Spallation Neutron Source at Oak Ridge National Laboratory, uses polarized 3He from an Atomic Beam Source injected into the superfluid 4He and transported to the measurement cells where it serves as a co-magnetometer. The superfluid 4He is also used as an insulating medium allowing significantly higher electric fields, compared to previous experiments, to be maintained across the measurement cells. These features provide an ultimate statistical uncertainty for the EDM of 2−3× 10−28 e-cm, with anticipated systematic uncertainties below this level.}, number={11}, journal={Journal of Instrumentation}, publisher={IOP Publishing}, author={Ahmed, M.W. and Alarcon, R. and Aleksandrova, A. and Baeßler, S. and Barron-Palos, L. and Bartoszek, L.M. and Beck, D.H. and Behzadipour, M. and Berkutov, I. and Bessuille, J. and et al.}, year={2019}, month={Nov}, pages={P11017–P11017} } @article{reid_lechenault_rica_adda-bedia_2017, title={Geometry and design of origami bellows with tunable response}, volume={95}, ISSN={["2470-0053"]}, DOI={10.1103/physreve.95.013002}, abstractNote={Origami folded cylinders (origami bellows) have found increasingly sophisticated applications in space flight and medicine. In spite of this interest, a general understanding of the mechanics of an origami folded cylinder has been elusive. With a newly developed set of geometrical tools, we have found an analytic solution for all possible cylindrical rigid-face states of both Miura-ori and triangular tessellations. Although an idealized bellows in both of these families may have two allowed rigid-face configurations over a well-defined region, the corresponding physical device, limited by nonzero material thickness and forced to balance hinge and plate-bending energy, often cannot stably maintain a stowed configuration. We have identified the parameters that control this emergent bistability, and we have demonstrated the ability to design and fabricate bellows with tunable deployability.}, number={1}, journal={PHYSICAL REVIEW E}, author={Reid, Austin and Lechenault, Frederic and Rica, Sergio and Adda-Bedia, Mokhtar}, year={2017}, month={Jan} } @article{brunck_lechenault_reid_adda-bedia_2016, title={Elastic theory of origami-based metamaterials}, volume={93}, ISSN={["2470-0053"]}, DOI={10.1103/physreve.93.033005}, abstractNote={Origami offers the possibility for new metamaterials whose overall mechanical properties can be programed by acting locally on each crease. Starting from a thin plate and having knowledge about the properties of the material and the folding procedure, one would like to determine the shape taken by the structure at rest and its mechanical response. In this article, we introduce a vector deformation field acting on the imprinted network of creases that allows us to express the geometrical constraints of rigid origami structures in a simple and systematic way. This formalism is then used to write a general covariant expression of the elastic energy of n-creases meeting at a single vertex. Computations of the equilibrium states are then carried out explicitly in two special cases: the generalized waterbomb base and the Miura-Ori. For the waterbomb, we show a generic bistability for any number of creases. For the Miura folding, however, we uncover a phase transition from monostable to bistable states that explains the efficient deployability of this structure for a given range of geometrical and mechanical parameters. Moreover, the analysis shows that geometric frustration induces residual stresses in origami structures that should be taken into account in determining their mechanical response. This formalism can be extended to a general crease network, ordered or otherwise, and so opens new perspectives for the mechanics and the physics of origami-based metamaterials.}, number={3}, journal={PHYSICAL REVIEW E}, author={Brunck, V. and Lechenault, F. and Reid, A. and Adda-Bedia, M.}, year={2016}, month={Mar} }