@article{sharma_guinness_muyskens_polizzotto_fuentes_hesterberg_2022, title={

Spatial statistical modeling of arsenic accumulation in microsites of diverse soils

}, volume={411}, ISSN={["1872-6259"]}, DOI={10.1016/j.geoderma.2022.115697}, abstractNote={Determining reaction mechanisms that control the mobility of nutrients and toxic elements in soil matrices is confounded by complex assemblages of minerals, non-crystalline solids, organic matter, and biota. Our objective was to infer the chemical elements and solids that contribute to As binding in matrices of soil samples from different pedogenic environments at the micrometer spatial scale. Arsenic was reacted with and imaged in thin weathering coatings on eight quartz sand grains separated from soils of different drainage classes to vary contents of Fe and Al (hydr)oxides, organic carbon (OC), and other elements. The grains were analyzed using X-ray fluorescence microprobe (µ-XRF) imaging and microscale X-ray absorption near edge structure (μ-XANES) spectroscopy before and after treatment with 0.1 mM As(V) solution. Partial correlation analyses and regression models developed from multi-element µ-XRF signals collected across 100 × 100 µm2 areas of sand-grain coatings inferred augmenting effects of Fe, Zn, Ti, Mn, or Cu on As retention. Significant partial correlations (r′ > 0.11) between Fe and Al from time-of-flight secondary ion mass spectrometry (TOF-SIMS) analysis of most samples suggested that Fe and Al (hydr)oxides were partially co-localized at the microscale. Linear combination fitting (LCF) results for As K-edge μ-XANES spectra collected across grain coatings typically included >80% of As(V) adsorbed on goethite, along with varying proportions of standards of As(V) adsorbed on boehmite, As(V) or As(III) bound to Fe(III)-treated peat, and dimethylarsinic acid. Complementary fits for Fe K-edge μ-XANES spectra included ≥50% of the Fe(III)-treated peat standard for all samples, along with goethite. Our collective results inferred a dominance of Fe and possibly Al (hydr)oxides in controlling As immobilization, with variable contributions from Zn, Ti, Cu, or Mn, both across the coating of a single sand grain and between grains from soils developed under different pedogenic environments. Overall, these results highlight the extreme heterogeneity of soils on the microscale and have implications on soil management for mitigating the adverse environmental impacts of As.}, journal={GEODERMA}, author={Sharma, Aakriti and Guinness, Joseph and Muyskens, Amanda and Polizzotto, Matthew L. and Fuentes, Montserrat and Hesterberg, Dean}, year={2022}, month={Apr} } @article{gomes_soares_carvalho_sharma_hesterberg_alleoni_2023, title={Zinc speciation and desorption kinetics in a mining waste impacted tropical soil amended with phosphate}, volume={864}, ISSN={["1879-1026"]}, DOI={10.1016/j.scitotenv.2022.161009}, abstractNote={Mining is an important component of the Brazilian economy. However, it may also contribute to environmental problems such as the pollution of soils with zinc and other potentially toxic metals. Our objective was to evaluate changes in the chemical speciation and mobility of Zn in a soil amended with phosphate. Soil samples were collected from a deactivated mining area in the state of Minas Gerais, Brazil, and amended with NH4H2PO4 saturated with deionized water to 70 % of maximum water retention and incubated at 25 ± 2 °C in open containers for 60 days. The soil was chemically and mineralogically characterized, and sequential extraction, desorption kinetics, and speciation were carried out using synchrotron bulk-sample and micro-X-ray Absorption Near-Edge Structure (XANES/μ-XANES) spectroscopy at the Zn K-edge, and X-ray fluorescence microprobe analysis (μ-XRF). The combination of μ-XRF and μ-XANES techniques made it possible to identify Zn hotspots in the main species formed after phosphate remediation. The best fit combination for bulk XANES and μ-XANES was observed in Zn-montmorillonite, Zn-kerolite, Zn-ferrihydrite, and gahnite. In the course of phosphate treatment, gahnite, Zn layered double hydroxides (Zn-LDH), Zn3(PO4), and ZnO were identified by bulk XANES, while Zn-ferrihydrite, Zn-montmorillonite, and scholzite were identified by μ-XANES. Zinc in the phosphate-amended soil had the strongest partial correlations (r' > 0.05) with Ni, Co, Fe, Cr, Mn, Si, P, Cd, Pb, and Cd, while the unamended soil showed the strongest correlation with Cu, Pb, Fe, and Si. The application of NH4H2PO4 altered Zn speciation and favored an increase in Zn desorption. The most available Zn contents after phosphate amendment were correlated with the release of exchangeable Zn fractions, associated with carbonate and organic matter.}, journal={SCIENCE OF THE TOTAL ENVIRONMENT}, author={Gomes, Frederico Prestes and Soares, Matheus Bortolanza and Carvalho, Hudson Wallace Pereira and Sharma, Aakriti and Hesterberg, Dean and Alleoni, Luis Reynaldo Ferracciu}, year={2023}, month={Mar} } @article{sharma_muyskens_guinness_polizzotto_fuentes_tappero_chen-wiegart_thieme_williams_acerbo_et al._2019, title={Multi-element effects on arsenate accumulation in a geochemical matrix determined using mu-XRF, mu-XANES and spatial statistics}, volume={26}, ISSN={["1600-5775"]}, DOI={10.1107/S1600577519012785}, abstractNote={Soils regulate the environmental impacts of trace elements, but direct measurements of reaction mechanisms in these complex, multi-component systems can be challenging. The objective of this work was to develop approaches for assessing effects of co-localized geochemical matrix elements on the accumulation and chemical speciation of arsenate applied to a soil matrix. Synchrotron X-ray fluorescence microprobe (µ-XRF) images collected across 100 µm × 100 µm and 10 µm × 10 µm regions of a naturally weathered soil sand-grain coating before and after treatment with As(V) solution showed strong positive partial correlations (r′ = 0.77 and 0.64, respectively) between accumulated As and soil Fe, with weaker partial correlations (r′ > 0.1) between As and Ca, and As and Zn in the larger image. Spatial and non-spatial regression models revealed a dominant contribution of Fe and minor contributions of Ca and Ti in predicting accumulated As, depending on the size of the sample area analyzed. Time-of-flight secondary ion mass spectrometry analysis of an area of the sand grain showed a significant correlation (r = 0.51) between Fe and Al, so effects of Fe versus Al (hydr)oxides on accumulated As could not be separated. Fitting results from 25 As K-edge microscale X-ray absorption near-edge structure (µ-XANES) spectra collected across a separate 10 µm × 10 µm region showed ∼60% variation in proportions of Fe(III) and Al(III)-bound As(V) standards, and fits to µ-XANES spectra collected across the 100 µm × 100 µm region were more variable. Consistent with insights from studies on model systems, the results obtained here indicate a dominance of Fe and possibly Al (hydr)oxides in controlling As(V) accumulation within microsites of the soil matrix analyzed, but the analyses inferred minor augmentation from co-localized Ti, Ca and possibly Zn.}, journal={JOURNAL OF SYNCHROTRON RADIATION}, author={Sharma, Aakriti and Muyskens, Amanda and Guinness, Joseph and Polizzotto, Matthew L. and Fuentes, Montserrat and Tappero, Ryan V. and Chen-Wiegart, Yu-chen K. and Thieme, Juergen and Williams, Garth J. and Acerbo, Alvin S. and et al.}, year={2019}, month={Nov}, pages={1967–1979} }