@article{nieman_ferrara_pecorelli_woodby_hoyle_simonson_valacchi_2020, title={Postexercise Inflammasome Activation and IL-1 beta Production Mitigated by Flavonoid Supplementation in Cyclists}, volume={30}, ISSN={["1543-2742"]}, DOI={10.1123/ijsnem.2020-0084}, abstractNote={Inflammasomes are multiprotein signaling platforms of the innate immune system that detect markers of physiological stress and promote the maturation of caspase-1 and interleukin 1 beta (IL-1β), IL-18, and gasdermin D. This randomized, cross-over trial investigated the influence of 2-week mixed flavonoid (FLAV) versus placebo (PL) supplementation on inflammasome activation and IL-1β and IL-18 production after 75-km cycling in 22 cyclists (42 ± 1.7 years). Blood samples were collected before and after the 2-week supplementation, and then 0 hr, 1.5 hr, and 21 hr postexercise (176 ± 5.4 min, 73.4 ± 2.0 %VO2max). The supplement (678 mg FLAVs) included quercetin, green tea catechins, and bilberry anthocyanins. The pattern of change in the plasma levels of the inflammasome adaptor oligomer ASC (apoptosis-associated speck-like protein containing caspase recruitment domain) was different between the FLAV and PL trials, with the FLAV ASC levels 52% lower (Cohen’sd = 1.06) than PL immediately following 75-km cycling (interaction effect,p = .012). The plasma IL-1β levels in FLAV were significantly lower than PL (23–42%; Cohen’sd = 0.293–0.644) throughout 21 hr of recovery (interaction effect,p = .004). The change in plasma gasdermin D levels were lower immediately postexercise in FLAV versus PL (15% contrast,p = .023; Cohen’sd = 0.450). The patterns of change in plasma IL-18 and IL-37 did not differ between the FLAV and PL trials (interaction effects,p = .388, .716, respectively). These data indicate that 2-week FLAV ingestion mitigated inflammasome activation, with a corresponding decrease in IL-1β release in cyclists after a 75-km cycling time trial. The data from this study support the strategy of ingesting high amounts of FLAV to mitigate postexercise inflammation.}, number={6}, journal={INTERNATIONAL JOURNAL OF SPORT NUTRITION AND EXERCISE METABOLISM}, author={Nieman, David C. and Ferrara, Francesca and Pecorelli, Alessandra and Woodby, Brittany and Hoyle, Andrew T. and Simonson, Andrew and Valacchi, Giuseppe}, year={2020}, month={Nov}, pages={396–404} } @article{nieman_valacchi_wentz_ferrara_pecorelli_woodby_sakaguchi_simonson_2020, title={Mixed Flavonoid Supplementation Attenuates Postexercise Plasma Levels of 4-Hydroxynonenal and Protein Carbonyls in Endurance Athletes}, volume={30}, ISSN={["1543-2742"]}, DOI={10.1123/ijsnem.2019-0171}, abstractNote={This double-blinded, placebo controlled, randomized crossover trial investigated the influence of 2-week mixed flavonoid versus placebo supplementation on oxinflammation markers after a 75-km cycling time trial in 22 cyclists (42.3 ± 1.7 years). Blood samples were collected before and after the 2-week supplementation, and then 0 hr, 1.5 hr, and 21 hr post 75-km cycling (176 ± 5.4 min, 73.4 ±2.0% maximal oxygen consumption). The supplement provided 678-mg flavonoids with quercetin (200 mg), green tea catechins (368 mg, 180-mg epigallocatechin gallate), and anthocyanins (128 mg) from bilberry extract, with caffeine, vitamin C, and omega-3 fatty acids added as adjuvants. Blood samples were analyzed for blood leukocyte counts, oxinflammation biomarkers, including 4-hydroxynonenal, protein carbonyls, and peripheral blood mononuclear mRNA expression for cyclooxygenease-2 and glutathione peroxidase. Each of the blood biomarkers was elevated postexercise (time effects, all ps < .01), with lower plasma levels for 4-hydroxynonenal (at 21-hr postexercise) in flavonoid versus placebo (interaction effect, p = .008). Although elevated postexercise, no trial differences for the neutrophil/lymphocyte ratio (p = .539) or peripheral blood mononuclear mRNA expression for cyclooxygenease-2 (p = .322) or glutathione peroxidase (p = .839) were shown. Flavonoid supplementation prior to intensive exercise decreased plasma peroxidation and oxidative damage, as determined by 4-hydroxynonenal. Postexercise increases were similar between the flavonoid and placebo trials for peripheral blood mononuclear mRNA expression for cyclooxygenease-2 and the nuclear factor erythroid 2-related factor 2 related gene glutathione peroxidase (NFE2L2). The data support the strategy of flavonoid supplementation to mitigate postexercise oxidative stress in endurance athletes.}, number={2}, journal={INTERNATIONAL JOURNAL OF SPORT NUTRITION AND EXERCISE METABOLISM}, author={Nieman, David C. and Valacchi, Giuseppe and Wentz, Laurel M. and Ferrara, Francesca and Pecorelli, Alessandra and Woodby, Brittany and Sakaguchi, Camila A. and Simonson, Andrew}, year={2020}, month={Mar}, pages={112–119} }