@article{tucker_bobay_banse_olson_soderblom_moseley_thompson_varney_losick_cavanagh_2014, title={A DNA Mimic: The Structure and Mechanism of Action for the Anti-Repressor Protein AbbA}, volume={426}, ISSN={["1089-8638"]}, DOI={10.1016/j.jmb.2014.02.010}, abstractNote={Bacteria respond to adverse environmental conditions by switching on the expression of large numbers of genes that enable them to adapt to unfavorable circumstances. In Bacillus subtilis, many adaptive genes are under the negative control of the global transition state regulator, the repressor protein AbrB. Stressful conditions lead to the de-repression of genes under AbrB control. Contributing to this de-repression is AbbA, an anti-repressor that binds to and blocks AbrB from binding to DNA. Here, we have determined the NMR structure of the functional AbbA dimer, confirmed that it binds to the N-terminal DNA-binding domain of AbrB, and have provided an initial description for the interaction using computational docking procedures. Interestingly, we show that AbbA has structural and surface characteristics that closely mimic the DNA phosphate backbone, enabling it to readily carry out its physiological function.}, number={9}, journal={JOURNAL OF MOLECULAR BIOLOGY}, author={Tucker, Ashley T. and Bobay, Benjamin G. and Banse, Allison V. and Olson, Andrew L. and Soderblom, Erik J. and Moseley, M. Arthur and Thompson, Richele J. and Varney, Kristen M. and Losick, Richard and Cavanagh, John}, year={2014}, month={May}, pages={1911–1924} } @article{olson_tucker_bobay_soderblom_moseley_thompson_cavanagh_2014, title={Structure and DNA-Binding Traits of the Transition State Regulator AbrB}, volume={22}, ISSN={["1878-4186"]}, DOI={10.1016/j.str.2014.08.018}, abstractNote={The AbrB protein from Bacillus subtilis is a DNA-binding global regulator controlling the onset of a vast array of protective functions under stressful conditions. Such functions include biofilm formation, antibiotic production, competence development, extracellular enzyme production, motility, and sporulation. AbrB orthologs are known in a variety of prokaryotic organisms, most notably in all infectious strains of Clostridia, Listeria, and Bacilli. Despite its central role in bacterial response and defense, its structure has been elusive because of its highly dynamic character. Orienting its N- and C-terminal domains with respect to one another has been especially problematic. Here, we have generated a structure of full-length, tetrameric AbrB using nuclear magnetic resonance, chemical crosslinking, and mass spectrometry. We note that AbrB possesses a strip of positive electrostatic potential encompassing its DNA-binding region and that its C-terminal domain aids in DNA binding.}, number={11}, journal={STRUCTURE}, author={Olson, Andrew L. and Tucker, Ashley T. and Bobay, Benjamin G. and Soderblom, Erik J. and Moseley, M. Arthur and Thompson, Richele J. and Cavanagh, John}, year={2014}, month={Nov}, pages={1650–1656} } @article{olson_liu_tucker_goshe_cavanagh_2013, title={Chemical crosslinking and LC/MS analysis to determine protein domain orientation: Application to AbrB}, volume={431}, ISSN={["1090-2104"]}, DOI={10.1016/j.bbrc.2012.12.124}, abstractNote={To fully understand the modes of action of multi-protein complexes, it is essential to determine their overall global architecture and the specific relationships between domains and subunits. The transcription factor AbrB is a functional homotetramer consisting of two domains per monomer. Obtaining the high-resolution structure of tetrameric AbrB has been extremely challenging due to the independent character of these domains. To facilitate the structure determination process, we solved the NMR structures of both domains independently and utilized gas-phase cleavable chemical crosslinking and LC/MS(n) analysis to correctly position the domains within the full tetrameric AbrB protein structure.}, number={2}, journal={BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS}, author={Olson, Andrew L. and Liu, Fan and Tucker, Ashley T. and Goshe, Michael B. and Cavanagh, John}, year={2013}, month={Feb}, pages={253–257} } @article{stowe_tucker_thompson_piper_richards_rogers_mathies_melander_cavanagh_2012, title={Evaluation of the toxicity of 2-aminoimidazole antibiofilm agents using both cellular and model organism systems}, volume={35}, ISSN={["1525-6014"]}, DOI={10.3109/01480545.2011.614620}, abstractNote={Biofilm formation is a ubiquitous bacterial defense mechanism and has been shown to be a primary element in the antibiotic resistance of many human diseases, especially in the case of nosocomial infections. Recently, we have developed several compound libraries that are extremely effective at both dispersing preexisting biofilms and also inhibiting their initial formation. In addition to their antibiofilm properties, some of these molecules are able to resensitize resistant bacterial strains to previously ineffective antibiotics and are being assessed as adjuvants. In this study, we evaluated the toxic effects of three of our most effective 2-aminoimidazole compounds (dihydrosventrin, RA, and SPAR) using a rapid pipeline that combines a series of assays. A methylthiazolyldiphenyl-tetrazolium assay, using the HaCaT keratinocyte cell line was used to determine epidermal irritants and was combined with Caenorhabditis elegans fecundity assays that demonstrated the effects of environmental exposure to various concentrations of these molecules. In each case, the assays showed that the compounds did not exhibit toxicity until they reached well above their current biofilm dispersion/inhibition concentrations. The most effective antibiofilm compound also had significant effects when used in conjunction with several standard antibiotics against resistant bacteria. Consequently, it was further investigated using the C. elegans assay in combination with different antibiotics and was found to maintain the same low level of toxicity as when acting alone, bolstering its candidacy for further testing as an adjuvant.}, number={3}, journal={DRUG AND CHEMICAL TOXICOLOGY}, author={Stowe, Sean D. and Tucker, Ashley T. and Thompson, Richele and Piper, Amanda and Richards, Justin J. and Rogers, Steven A. and Mathies, Laura D. and Melander, Christian and Cavanagh, John}, year={2012}, month={Jul}, pages={310–315} } @article{bobay_stewart_tucker_thompson_varney_cavanagh_2012, title={Structural insights into the calcium-dependent interaction between calbindin-D28K and caspase-3}, volume={586}, ISSN={["0014-5793"]}, DOI={10.1016/j.febslet.2012.08.032}, abstractNote={Calbindin‐D28K and Caspase‐3 bind by isothermal titration calorimetry (View interaction)}, number={20}, journal={FEBS LETTERS}, author={Bobay, Benjamin G. and Stewart, Amanda L. and Tucker, Ashley T. and Thompson, Richele J. and Varney, Kristen M. and Cavanagh, John}, year={2012}, month={Oct}, pages={3582–3589} } @misc{stowe_richards_tucker_thompson_melander_cavanagh_2011, title={Anti-biofilm compounds derived from marine sponges}, volume={9}, number={10}, journal={Marine Drugs}, author={Stowe, S. D. and Richards, J. J. and Tucker, A. T. and Thompson, R. and Melander, C. and Cavanagh, J.}, year={2011}, pages={2010–2035} }