@article{richers_mclaughlin_kneller_vlasenko_2019, title={Neutrino quantum kinetics in compact objects}, volume={99}, ISSN={["2470-0029"]}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-85068983479&partnerID=MN8TOARS}, DOI={10.1103/PhysRevD.99.123014}, abstractNote={Neutrinos play a critical role of transporting energy and changing the lepton density within core-collapse supernovae and neutron star mergers. The quantum kinetic equations (QKEs) combine the effects of neutrino-matter interactions treated in classical Boltzmann transport with the neutrino flavor-changing effects treated in neutrino oscillation calculations. We present a method for extending existing neutrino interaction rates to full QKE source terms for use in numerical calculations. We demonstrate the effects of absorption and emission by nucleons and nuclei, electron scattering, electron-positron pair annihilation, nucleon-nucleon bremsstrahlung, neutrino-neutrino scattering. For the first time, we include all these collision terms self-consistently in a simulation of the full isotropic QKEs in conditions relevant to core-collapse supernovae and neutron star mergers. For our choice of parameters, the long-term evolution of the neutrino distribution function proceeds similarly with and without the oscillation term, though with measurable differences. We demonstrate that electron scattering, nucleon-nucleon bremsstrahlung processes, and four-neutrino processes dominate flavor decoherence in the protoneutron star (PNS), absorption dominates near the shock, and all of the considered processes except elastic nucleon scattering are relevant in the decoupling region. Finally, we propose an effective decoherence opacity that at most energies predicts decoherence rates to within a factor of 10 in our model PNS and within 20% outside of the PNS.}, number={12}, journal={PHYSICAL REVIEW D}, publisher={American Physical Society (APS)}, author={Richers, Sherwood A. and McLaughlin, Gail C. and Kneller, James P. and Vlasenko, Alexey}, year={2019}, month={Jun} } @article{vlasenko_mclaughlin_2018, title={Matter-neutrino resonance in a multiangle neutrino bulb model}, volume={97}, ISSN={["2470-0029"]}, DOI={10.1103/physrevd.97.083011}, abstractNote={Simulations of neutrino flavor evolution in compact merger environments have shown that neutrino flavor, and hence nucleosynthesis, can be strongly affected by the presence of matter-neutrino resonances (MNRs), where there is a cancelation between the matter and the neutrino potential. Simulations performed thus far follow flavor evolution along a single neutrino trajectory, but self-consistency requires all trajectories to be treated simultaneously, and it has not been known whether MNR phenomena would still occur in multi-angle models. In this paper, we present the first fully multi-angle calculations of MNR. We find that familiar MNR phenomena, where neutrinos transform to a greater extent than anti-neutrinos and a feedback mechanism maintains the cancellation between the matter and neutrino potential, still occurs for a subset of angular bins, although the flavor transformation is not as efficient as in the single-angle case. In addition, we find other types of flavor transformation that are not seen in single-angle simulations. These flavor transformation phenomena appear to be robust and are present for a wide range of model parameters, as long as an MNR is present. Although computational constraints currently limit us to models with spherical symmetry, our results suggest that the presence of an MNR generally leads to large-scale neutrino flavor evolution in multi-angle systems.}, number={8}, journal={PHYSICAL REVIEW D}, author={Vlasenko, Alexey and McLaughlin, G. C.}, year={2018}, month={Apr} } @article{paris_fuller_grohs_kishimoto_vlasenko_2017, title={Constraining nuclear data via cosmological observations: Neutrino energy transport and big bang nucleosynthesis}, volume={146}, ISSN={["2100-014X"]}, DOI={10.1051/epjconf/201714601008}, abstractNote={We introduce a new computational capability that moves toward a self-consistent calculation of neutrino transport and nuclear reactions for big bang nucleosynthesis (BBN). Such a self-consistent approach is needed to be able to extract detailed information about nuclear reactions and physics beyond the standard model from precision cosmological observations of primordial nuclides and the cosmic microwave background radiation. We calculate the evolution of the early universe through the epochs of weak decoupling, weak freeze-out and big bang nucleosynthesis (BBN) by simultaneously coupling a full strong, electromagnetic, and weak nuclear reaction network with a multi-energy group Boltzmann neutrino energy transport scheme. The modular structure of our approach allows the dissection of the relative contributions of each process responsible for evolving the dynamics of the early universe. Such an approach allows a detailed account of the evolution of the active neutrino energy distribution functions alongside and self-consistently with the nuclear reactions and entropy/heat generation and 'ow between the neutrino and photon/electron/positron/baryon plasma components. Our calculations reveal nonlinear feedback in the time evolution of neutrino distribution functions and plasma thermodynamic conditions. We discuss the time development of neutrino spectral distortions and concomitant entropy production and extraction from the plasma. These e↑ects result in changes in the computed values of the BBN deuterium and helium-4 yields that are on the order of a half-percent relative to a baseline standard BBN calculation with no neutrino transport. This is an order of magnitude larger e↑ect than in previous estimates. For particular implementations of quantum corrections in plasma thermodynamics, our calculations show a 0.4% increase in deuterium and a 0.6% decrease in 4 He over our baseline. The magnitude of these changes are on the order of uncertainties in the nuclear physics for the case of deuterium and are potentially signi↓cant for the error budget of helium in upcoming cosmological observations.}, journal={ND 2016: INTERNATIONAL CONFERENCE ON NUCLEAR DATA FOR SCIENCE AND TECHNOLOGY}, author={Paris, Mark and Fuller, George and Grohs, Evan and Kishimoto, Chad and Vlasenko, Alexey}, year={2017} } @article{grohs_fuller_kishimoto_paris_vlasenko_2016, title={Neutrino energy transport in weak decoupling and big bang nucleosynthesis}, volume={93}, ISSN={["2470-0029"]}, DOI={10.1103/physrevd.93.083522}, abstractNote={In this study, we calculate the evolution of the early universe through the epochs of weak decoupling, weak freeze-out and big bang nucleosynthesis (BBN) by simultaneously coupling a full strong, electromagnetic, and weak nuclear reaction network with a multienergy group Boltzmann neutrino energy transport scheme. The modular structure of our code provides the ability to dissect the relative contributions of each process responsible for evolving the dynamics of the early universe in the absence of neutrino flavor oscillations. Such an approach allows a detailed accounting of the evolution of the νe, ν¯e, νμ, ν¯μ, ντ, ν¯τ energy distribution functions alongside and self-consistently with the nuclear reactions and entropy/heat generation and flow between the neutrino and photon/electron/positron/baryon plasma components. This calculation reveals nonlinear feedback in the time evolution of neutrino distribution functions and plasma thermodynamic conditions (e.g., electron-positron pair densities), with implications for the phasing between scale factor and plasma temperature; the neutron-to-proton ratio; light-element abundance histories; and the cosmological parameter Neff. We find that our approach of following the time development of neutrino spectral distortions and concomitant entropy production and extraction from the plasma results in changes in the computed value of the BBN deuterium yield. For example, for particularmore » implementations of quantum corrections in plasma thermodynamics, our calculations show a 0.4% increase in deuterium. These changes are potentially significant in the context of anticipated improvements in observational and nuclear physics uncertainties.« less}, number={8}, journal={PHYSICAL REVIEW D}, author={Grohs, E. and Fuller, G. M. and Kishimoto, C. T. and Paris, M. W. and Vlasenko, A.}, year={2016}, month={Apr} }