@article{krane_carly a. o'dea_malarkey_miller_miller_tokarz_jensen_janardhan_shockley_flagler_et al._2021, title={Immunohistochemical evaluation of immune cell infiltration in canine gliomas}, volume={7}, ISSN={["1544-2217"]}, DOI={10.1177/03009858211023946}, abstractNote={Evasion of the immune response is an integral part of the pathogenesis of glioma. In humans, important mechanisms of immune evasion include recruitment of regulatory T cells (Tregs) and polarization of macrophages toward an M2 phenotype. Canine glioma has a robust immune cell infiltrate that has not been extensively characterized. The purpose of this study was to determine the distribution of immune cells infiltrating spontaneous intracranial canine gliomas. Seventy-three formalin-fixed, paraffin-embedded tumor samples were evaluated using immunohistochemistry for CD3, forkhead box 3 (FOXP3), CD20, Iba1, calprotectin (Mac387), CD163, and indoleamine 2,3-dioxygenase (IDO). Immune cell infiltration was present in all tumors. Low-grade and high-grade gliomas significantly differed in the numbers of FoxP3+ cells, Mac387+ cells, and CD163+ cells ( P = .006, .01, and .01, respectively). Considering all tumors, there was a significant increase in tumor area fraction of CD163 compared to Mac387 ( P < .0001), and this ratio was greater in high-grade tumors than in low-grade tumors ( P = .005). These data warrant further exploration into the roles of macrophage repolarization or Treg interference therapy in canine glioma.}, journal={VETERINARY PATHOLOGY}, author={Krane, Gregory A. and Carly A. O'Dea and Malarkey, David E. and Miller, Andrew D. and Miller, C. Ryan and Tokarz, Debra A. and Jensen, Heather L. and Janardhan, Kyathanahalli S. and Shockley, Keith R. and Flagler, Norris and et al.}, year={2021}, month={Jul} }