@article{montgomery_walden-schreiner_saffer_jones_seliger_worm_tateosian_shukunobe_kumar_meentemeyer_2023, title={Forecasting global spread of invasive pests and pathogens through international trade}, volume={14}, ISSN={["2150-8925"]}, url={http://dx.doi.org/10.1002/ecs2.4740}, DOI={10.1002/ecs2.4740}, abstractNote={AbstractNon‐native plant pests and pathogens threaten biodiversity, ecosystem function, food security, and economic livelihoods. As new invasive populations establish, often as an unintended consequence of international trade, they can become additional sources of introductions, accelerating global spread through bridgehead effects. While the study of non‐native pest spread has used computational models to provide insights into drivers and dynamics of biological invasions and inform management, efforts have focused on local or regional scales and are challenged by complex transmission networks arising from bridgehead population establishment. This paper presents a flexible spatiotemporal stochastic network model called PoPS (Pest or Pathogen Spread) Global that couples international trade networks with core drivers of biological invasions—climate suitability, host availability, and propagule pressure—quantified through open, globally available databases to forecast the spread of non‐native plant pests. The modular design of the framework makes it adaptable for various pests capable of dispersing via human‐mediated pathways, supports proactive responses to emerging pests when limited data are available, and enables forecasts at different spatial and temporal resolutions. We demonstrate the framework using a case study of the invasive planthopper spotted lanternfly (Lycorma delicatula). The model was calibrated with historical, known spotted lanternfly introductions to identify potential bridgehead populations that may contribute to global spread. This global view of phytosanitary pandemics provides crucial information for anticipating biological invasions, quantifying transport pathways risk levels, and allocating resources to safeguard plant health, agriculture, and natural resources.}, number={12}, journal={ECOSPHERE}, author={Montgomery, Kellyn and Walden-Schreiner, Chelsey and Saffer, Ariel and Jones, Chris and Seliger, Benjamin J. and Worm, Thom and Tateosian, Laura and Shukunobe, Makiko and Kumar, Sunil and Meentemeyer, Ross K.}, year={2023}, month={Dec} } @article{jones_skrip_seliger_jones_wakie_takeuchi_petras_petrasova_meentemeyer_2022, title={Spotted lanternfly predicted to establish in California by 2033 without preventative management}, volume={5}, ISSN={["2399-3642"]}, url={https://doi.org/10.1038/s42003-022-03447-0}, DOI={10.1038/s42003-022-03447-0}, abstractNote={AbstractModels that are both spatially and temporally dynamic are needed to forecast where and when non-native pests and pathogens are likely to spread, to provide advance information for natural resource managers. The potential US range of the invasive spotted lanternfly (SLF, Lycorma delicatula) has been modeled, but until now, when it could reach the West Coast’s multi-billion-dollar fruit industry has been unknown. We used process-based modeling to forecast the spread of SLF assuming no treatments to control populations occur. We found that SLF has a low probability of first reaching the grape-producing counties of California by 2027 and a high probability by 2033. Our study demonstrates the importance of spatio-temporal modeling for predicting the spread of invasive species to serve as an early alert for growers and other decision makers to prepare for impending risks of SLF invasion. It also provides a baseline for comparing future control options.}, number={1}, journal={COMMUNICATIONS BIOLOGY}, author={Jones, Chris and Skrip, Megan M. and Seliger, Benjamin J. and Jones, Shannon and Wakie, Tewodros and Takeuchi, Yu and Petras, Vaclav and Petrasova, Anna and Meentemeyer, Ross K.}, year={2022}, month={Jun} } @article{seliger_mcgill_svenning_gill_2021, title={Widespread underfilling of the potential ranges of North American trees}, volume={48}, ISSN={["1365-2699"]}, DOI={10.1111/jbi.14001}, abstractNote={AbstractAimClimatic equilibrium is a foundational principle in ecological theory and models used in conservation, but has been challenged by growing evidence of disequilibrium, particularly for long‐lived, sessile organisms like trees. Here, we calculated range filling for North American trees to detect the degree to which trees are filling their potential climatic niches, and to assess climatic and non‐climatic drivers of underfilling.LocationNorth America (22°N–72°N).TaxonTrees and shrubs.MethodsWe modelled the potential ranges of 447 North American tree and shrub species with species distribution models using bioclimatic variables, and calculated the occupied proportion of each potential range. Results were compared to a null model using simulated ranges generated by a spreading‐dye algorithm. We further used range shape ratios (latitude/longitude) to detect the drivers of disequilibrium.ResultsThe potential ranges of North American trees and shrubs are broadly underfilled (mean = 48%). Furthermore, range filling is positively correlated with geographic range size. Large‐ranged species have higher range filling than the null model, and shape ratios indicative of climatic restrictions. Small‐ranged species showed a stronger influence of dispersal limitation.Main conclusionsClimate explains only about half of tree species' ranges, and the signal of climatic equilibrium increases with range size. Small‐range species show high levels of climatic disequilibrium, which is likely be driven by combinations of dispersal lags, and undetected environmental factors or biotic interactions. These results highlight the importance of conserving small‐ranged species and the difficulty of forecasting how their distributions will shift in the coming centuries.}, number={2}, journal={JOURNAL OF BIOGEOGRAPHY}, author={Seliger, Benjamin J. and McGill, Brian J. and Svenning, Jens-Christian and Gill, Jacquelyn L.}, year={2021}, month={Feb}, pages={359–371} }