@article{tabor_thompson_agcayazi_bozkurt_ghosh_2021, title={Melt-Extruded Sensory Fibers for Electronic Textiles}, volume={307}, ISSN={["1439-2054"]}, url={https://doi.org/10.1002/mame.202100737}, DOI={10.1002/mame.202100737}, abstractNote={Abstract Textile‐based flexible sensors are key to the development of personal wearable electronic devices and systems for a wide range of applications including physiological monitoring, communication, and entertainment. Textiles, for their many desirable characteristics and use, offer a natural interface between electronics and the human body. A wide range of fabrication techniques have been explored for textile‐based sensors; however, most are not compatible or readily adaptable to textile manufacturing processes. Here, a practical and scalable method of producing textile‐based sensory fibers using a common manufacturing technique, melt extrusion, is proposed. An overview of the fabrication method as well as the mechanical and electrical properties of the fibers is presented. Subsequently, the fibers’ ability to sense changes in pressure is studied in detail using assembled fibers. Methods to improve the sensor performance by altering the geometry of the fiber assembly are also presented. As a proof‐of‐concept demonstration, the fibers are woven into a pressure‐sensing fabric mat consisting of 64 sensing elements. The woven substrate can detect the location and level of pressure, thereby illustrating the fibers' potential use as sensors in textile structures.}, number={3}, journal={MACROMOLECULAR MATERIALS AND ENGINEERING}, publisher={Wiley}, author={Tabor, Jordan and Thompson, Brendan and Agcayazi, Talha and Bozkurt, Alper and Ghosh, Tushar K.}, year={2021}, month={Dec} } @article{tabor_agcayazi_fleming_thompson_kapoor_liu_lee_huang_bozkurt_ghosh_2021, title={Textile-Based Pressure Sensors for Monitoring Prosthetic-Socket Interfaces}, volume={21}, ISSN={["1558-1748"]}, url={https://doi.org/10.1109/JSEN.2021.3053434}, DOI={10.1109/JSEN.2021.3053434}, abstractNote={Amputees are prone to experiencing discomfort when wearing their prosthetic devices. As the amputee population grows this becomes a more prevalent and pressing concern. There is a need for new prosthetic technologies to construct more comfortable and well-fitted liners and sockets. One of the well-recognized impediments to the development of new prosthetic technology is the lack of practical inner socket sensors to monitor the inner socket environment (ISE), or the region between the residual limb and the socket. Here we present a capacitive pressure sensor fabricated through a simple, and scalable sewing process using commercially available conductive yarns and textile materials. This fully-textile sensor provides a soft, flexible, and comfortable sensing system for monitoring the ISE. We provide details of our low-power sensor system capable of high-speed data collection from up to four sensor arrays. Additionally, we demonstrate two custom set-ups to test and validate the textile-based sensors in a simulated prosthetic environment. Finally, we utilize the textile-based sensors to study the ISE of a bilateral transtibial amputee. Results indicate that the textile-based sensors provide a promising potential for seamlessly monitoring the ISE.}, number={7}, journal={IEEE SENSORS JOURNAL}, publisher={Institute of Electrical and Electronics Engineers (IEEE)}, author={Tabor, Jordan and Agcayazi, Talha and Fleming, Aaron and Thompson, Brendan and Kapoor, Ashish and Liu, Ming and Lee, Michael Y. and Huang, He and Bozkurt, Alper and Ghosh, Tushar K.}, year={2021}, month={Apr}, pages={9413–9422} }