@article{rioux_van ryzin_kerns_2017, title={Brachypodium: A Potential Model Host for Fungal Pathogens of Turfgrasses}, volume={107}, ISSN={["1943-7684"]}, DOI={10.1094/phyto-08-16-0318-r}, abstractNote={ Brachypodium distachyon is a C3 grass that is an attractive model host system for studying pathogenicity of major turfgrass pathogens due to its genetic similarity to many cool-season turfgrasses. Infection assays with two or more isolates of the casual agents of dollar spot, brown patch, and Microdochium patch resulted in compatible interactions with B. distachyon inbred line Bd21-3. The symptoms produced by these pathogens on Bd21-3 closely resembled those observed on the natural turfgrass host (creeping bentgrass), demonstrating that B. distachyon is susceptible to the fungal pathogens that cause dollar spot, brown patch, and Microdochium patch on turfgrasses. The interaction between Sclerotinia homoeocarpa isolates and Brachypodium ecotypes was also investigated. Interestingly, differential responses of these ecotypes to S. homoeocarpa isolates was found, particularly when comparing B. distachyon to B. hybridum ecotypes. Taken together, these findings demonstrate that B. distachyon can be used as a model host system for these turfgrass diseases and leveraged for studies of molecular mechanisms contributing to host resistance. }, number={6}, journal={PHYTOPATHOLOGY}, author={Rioux, Renee A. and Van Ryzin, Benjamin J. and Kerns, James P.}, year={2017}, month={Jun}, pages={749–757} } @article{rioux_van ryzin_kerns_2014, title={Development of a semi-selective medium for improved isolation of the turfgrass dollar spot pathogen Sclerotinia homoeocarpa from host tissues}, volume={36}, ISSN={["1715-2992"]}, DOI={10.1080/07060661.2014.906505}, abstractNote={Abstract Dollar spot, caused by Sclerotinia homoeocarpa, is one of the most economically devastating diseases of amenity turfgrasses worldwide. The pathogen is readily isolated from active lesions, but detection from seed, dormant host tissue and other plant debris that may serve as a source of primary inoculum is difficult. A semi-selective medium was developed to enhance isolation of S. homoeocarpa. Various fungicides used on turfgrass, the pH indicator dye bromophenol blue, and two pH levels, were assessed for their effects on, and in the case of bromophenol blue, response to growth of S. homoeocarpa and contaminant fungi frequently isolated from field and seed samples. Amendment of the medium to pH 4 promoted growth of S. homoeocarpa in the absence of fungicides and enhanced pathogen growth relative to contaminant isolates on medium amended with 0.1 μg mL−1 triticonazole or 5 μg mL−1 azoxystrobin. The growth rate of S. homoeocarpa on these three media, as determined by in vitro radial growth assays, was consistent for many isolates representing the majority of S. homoeocarpa vegetative compatibility groups. Isolation efficiency on the pH-amended media was tested against antibiotic-amended potato dextrose agar from field samples and artificially inoculated turfgrass seed. In both cases, the medium amended to pH 4 and containing 5 μg mL−1 azoxystrobin significantly decreased contaminant growth with no adverse effects on recovery of S. homoeocarpa in comparison with antibiotic-amended PDA. The enhanced specificity of this medium will be a useful tool for selective detection of S. homoeocarpa and identification of sources of initial inoculum for dollar spot development.}, number={2}, journal={CANADIAN JOURNAL OF PLANT PATHOLOGY}, author={Rioux, Renee A. and Van Ryzin, Benjamin J. and Kerns, James P.}, year={2014}, pages={235–245} }