@article{guo_chauhan_woodward_mcandrews_thapa_lefler_li_wang_darabi_mcgehee_et al._2023, title={In situ Stress Monitoring Reveals Tension and Wrinkling Evolutions during Halide Perovskite Film Formation}, volume={9}, ISSN={["2380-8195"]}, DOI={10.1021/acsenergylett.3c02079}, abstractNote={Metal halide perovskites (MHPs) are promising candidates for next-generation thin film photovoltaics and high-performance tandems. Solution-processed MHP films are susceptible to residual stress that can induce undesirable surface wrinkles. However, the origins and evolution of stress during solution processing remain elusive. In this work, we utilize multimodal in situ characterizations, including substrate curvature, reflectance, absorbance, and photoluminescence, to monitor stress and morphology evolution during MHP film formation. A film formation model emerges, consisting of a perovskite top crust on a semirigid sol with the ability to transfer mechanical forces. The phase transformation induces tension in the MHP crust, while shrinkage of the sol causes additional compression and surface wrinkles. Wrinkle-free films are formed through dynamically balancing forces between the crust and the sol. This study provides a powerful toolkit for the fast-growing area of stress engineering in MHP photovoltaics to achieve dynamic control of film stress and surface morphology.}, number={1}, journal={ACS ENERGY LETTERS}, author={Guo, Boyu and Chauhan, Mihirsinh and Woodward, Nathaniel R. and McAndrews, Gabriel R. and Thapa, Gaurab J. and Lefler, Benjamin M. and Li, Ruipeng and Wang, Tonghui and Darabi, Kasra and McGehee, Michael D. and et al.}, year={2023}, month={Dec}, pages={75–84} } @article{ghasemi_guo_darabi_wang_wang_huang_lefler_taussig_chauhan_baucom_et al._2023, title={A multiscale ion diffusion framework sheds light on the diffusion-stability-hysteresis nexus in metal halide perovskites}, ISSN={["1476-4660"]}, DOI={10.1038/s41563-023-01488-2}, abstractNote={Stability and current-voltage hysteresis stand as major obstacles to the commercialization of metal halide perovskites. Both phenomena have been associated with ion migration, with anecdotal evidence that stable devices yield low hysteresis. However, the underlying mechanisms of the complex stability-hysteresis link remain elusive. Here we present a multiscale diffusion framework that describes vacancy-mediated halide diffusion in polycrystalline metal halide perovskites, differentiating fast grain boundary diffusivity from volume diffusivity that is two to four orders of magnitude slower. Our results reveal an inverse relationship between the activation energies of grain boundary and volume diffusions, such that stable metal halide perovskites exhibiting smaller volume diffusivities are associated with larger grain boundary diffusivities and reduced hysteresis. The elucidation of multiscale halide diffusion in metal halide perovskites reveals complex inner couplings between ion migration in the volume of grains versus grain boundaries, which in turn can predict the stability and hysteresis of metal halide perovskites, providing a clearer path to addressing the outstanding challenges of the field.}, journal={NATURE MATERIALS}, author={Ghasemi, Masoud and Guo, Boyu and Darabi, Kasra and Wang, Tonghui and Wang, Kai and Huang, Chiung-Wei and Lefler, Benjamin M. and Taussig, Laine and Chauhan, Mihirsinh and Baucom, Garrett and et al.}, year={2023}, month={Feb} }