@article{graham_park_billings_hulse-kemp_haigler_lobaton_2022, title={Efficient imaging and computer vision detection of two cell shapes in young cotton fibers}, volume={11}, ISSN={["2168-0450"]}, url={https://doi.org/10.1002/aps3.11503}, DOI={10.1002/aps3.11503}, abstractNote={Abstract}, journal={APPLICATIONS IN PLANT SCIENCES}, author={Graham, Benjamin P. and Park, Jeremy and Billings, Grant T. and Hulse-Kemp, Amanda M. and Haigler, Candace H. and Lobaton, Edgar}, year={2022}, month={Nov} } @article{graham_haigler_2021, title={Microtubules exert early, partial, and variable control of cotton fiber diameter}, volume={253}, ISSN={["1432-2048"]}, url={https://doi.org/10.1007/s00425-020-03557-1}, DOI={10.1007/s00425-020-03557-1}, abstractNote={Variable cotton fiber diameter is set early in anisotropic elongation by cell-type-specific processes involving the temporal and spatial regulation of microtubules in the apical region. Cotton fibers are single cells that originate from the seed epidermis of Gossypium species. Then, they undergo extreme anisotropic elongation and limited diametric expansion. The details of cellular morphogenesis determine the quality traits that affect fiber uses and value, such as length, strength, and diameter. Lower and more consistent diameter would increase the competitiveness of cotton fiber with synthetic fiber, but we do not know how this trait is controlled. The complexity of the question is indicated by the existence of fibers in two major width classes in the major commercial species: broad and narrow fibers exist in commonly grown G. hirsutum, whereas G. barbadense produces only narrow fiber. To further understand how fiber diameter is controlled, we used ovule cultures, morphology measurements, and microtubule immunofluorescence to observe the effects of microtubule antagonists on fiber morphology, including shape and diameter within 80 µm of the apex. The treatments were applied at either one or two days post-anthesis during different stages of fiber morphogenesis. The results showed that inhibiting the presence and/or dynamic activity of microtubules caused larger diameter tips to form, with greater effects often observed with earlier treatment. The presence and geometry of a microtubule-depleted-zone below the apex were transiently correlated with the apical diameter of the narrow tip types. Similarly, the microtubule antagonists had somewhat different effects between tip types. Overall, the results demonstrate cell-type-specific mechanisms regulating fiber expansion within 80 µm of the apex, with variation in the impact of microtubules between tip types and over developmental time.}, number={2}, journal={PLANTA}, publisher={Springer Science and Business Media LLC}, author={Graham, Benjamin P. and Haigler, Candace H.}, year={2021}, month={Jan} } @article{pierce_graham_stiff_osborne_haigler_2019, title={Cultures of Gossypium barbadense cotton ovules offer insights into the microtubule-mediated control of fiber cell expansion}, volume={249}, ISSN={0032-0935 1432-2048}, url={http://dx.doi.org/10.1007/s00425-019-03106-5}, DOI={10.1007/s00425-019-03106-5}, abstractNote={A novel method for culturing ovules of Gossypium barbadense allowed in vitro comparisons with Gossypium hirsutum and revealed variable roles of microtubules in controlling cotton fiber cell expansion. Cotton fibers undergo extensive elongation and secondary wall thickening as they develop into our most important renewable textile material. These single cells elongate at the apex as well as elongating and expanding in diameter behind the apex. These multiple growth modes represent an interesting difference compared to classical tip-growing cells that needs to be explored further. In vitro ovule culture enables experimental analysis of the controls of cotton fiber development in commonly grown Gossypium hirsutum cotton, but, previously, there was no equivalent system for G. barbadense, which produces higher quality cotton fiber. Here, we describe: (a) how to culture the ovules of G. barbadense successfully, and (b) the results of an in vitro experiment comparing the role of microtubules in controlling cell expansion in different zones near the apex of three types of cotton fiber tips. Adding the common herbicide fluridone, 1-Methyl-3-phenyl-5-[3-(trifluoromethyl)phenyl]-4(1H)-pyridinone, to the medium supported G. barbadense ovule culture, with positive impacts on the number of useful ovules and fiber length. The effect is potentially mediated through inhibited synthesis of abscisic acid, which antagonized the positive effects of fluridone. Fiber development was perturbed by adding colchicine, a microtubule antagonist, to ovules of G. barbadense and G. hirsutum cultured 2 days after flowering. The results supported the zonal control of cell expansion in one type of G. hirsutum fiber tip and highlighted differences in the role of microtubules in modulating cell expansion between three types of cotton fiber tips.}, number={5}, journal={Planta}, publisher={Society for Mining, Metallurgy and Exploration Inc.}, author={Pierce, Ethan T. and Graham, Benjamin P. and Stiff, Michael R. and Osborne, Jason A. and Haigler, Candace H.}, year={2019}, month={Feb}, pages={1551–1563} }