@article{zhang_xiao_johnson_cai_horowitz_mennicke_coffey_haider_threadgill_eliscu_et al._2023, title={Bulk and mosaic deletions of Egfr reveal regionally defined gliogenesis in the developing mouse forebrain}, volume={26}, ISSN={["2589-0042"]}, DOI={10.1016/j.isci.2023.106242}, abstractNote={The epidermal growth factor receptor (EGFR) plays a role in cell proliferation and differentiation during healthy development and tumor growth; however, its requirement for brain development remains unclear. Here we used a conditional mouse allele for Egfr to examine its contributions to perinatal forebrain development at the tissue level. Subtractive bulk ventral and dorsal forebrain deletions of Egfr uncovered significant and permanent decreases in oligodendrogenesis and myelination in the cortex and corpus callosum. Additionally, an increase in astrogenesis or reactive astrocytes in effected regions was evident in response to cortical scarring. Sparse deletion using mosaic analysis with double markers (MADM) surprisingly revealed a regional requirement for EGFR in rostrodorsal, but not ventrocaudal glial lineages including both astrocytes and oligodendrocytes. The EGFR-independent ventral glial progenitors may compensate for the missing EGFR-dependent dorsal glia in the bulk Egfr-deleted forebrain, potentially exposing a regenerative population of gliogenic progenitors in the mouse forebrain.}, number={3}, journal={ISCIENCE}, author={Zhang, Xuying and Xiao, Guanxi and Johnson, Caroline and Cai, Yuheng and Horowitz, Zachary K. and Mennicke, Christine and Coffey, Robert and Haider, Mansoor and Threadgill, David and Eliscu, Rebecca and et al.}, year={2023}, month={Mar} } @article{johnson_ghashghaei_2020, title={Sp2 regulates late neurogenic but not early expansive divisions of neural stem cells underlying population growth in the mouse cortex}, volume={147}, ISSN={["1477-9129"]}, DOI={10.1242/dev.186056}, abstractNote={Cellular and molecular mechanisms underlying the switch from self-amplification of cortical stem cells to neuronal and glial generation are incompletely understood despite their importance for neural development. Here we investigated the role of the transcription factor Specificity Protein 2 (Sp2) in expansive and neurogenic divisions of the developing cerebral cortex by combining conditional genetic deletion with the Mosaic Analysis with Double Markers (MADM) system in mice. We find that loss of Sp2 in progenitors undergoing neurogenic divisions results in prolonged mitosis due to extension of early mitotic stages. This disruption is correlated with depletion of the populations of upper layer neurons in the cortex. In contrast, early cortical neural stem cells proliferate and expand normally in the absence of Sp2. These results indicate a stage-specific requirement for Sp2 in neural stem and progenitor cells and reveal mechanistic differences between the early expansive and later neurogenic periods of cortical development.}, number={4}, journal={DEVELOPMENT}, author={Johnson, Caroline A. and Ghashghaei, H. Troy}, year={2020}, month={Feb} } @article{johnson_ghashghaei_2020, title={The people behind the papers - Caroline Johnson and Troy Ghashghaei}, volume={147}, ISSN={["1477-9129"]}, DOI={10.1242/dev.188904}, abstractNote={ABSTRACT}, number={4}, journal={DEVELOPMENT}, author={Johnson, Caroline and Ghashghaei, Troy}, year={2020}, month={Feb} } @article{muthusamy_zhang_johnson_yadav_ghashghaei_2017, title={Developmentally defined forebrain circuits regulate appetitive and aversive olfactory learning}, volume={20}, ISSN={["1546-1726"]}, DOI={10.1038/nn.4452}, abstractNote={Postnatal and adult neurogenesis are region- and modality-specific, but the significance of developmentally distinct neuronal populations remains unclear. We demonstrate that chemogenetic inactivation of a subset of forebrain and olfactory neurons generated at birth disrupts responses to an aversive odor. In contrast, novel appetitive odor learning is sensitive to inactivation of adult-born neurons, revealing that developmentally defined sets of neurons may differentially participate in hedonic aspects of sensory learning.}, number={1}, journal={NATURE NEUROSCIENCE}, author={Muthusamy, Nagendran and Zhang, Xuying and Johnson, Caroline A. and Yadav, Prem N. and Ghashghaei, H. Troy}, year={2017}, month={Jan}, pages={20–23} } @article{davis_amin_johnson_bagley_ghashghaei_nascone-yoder_2017, title={Stomach curvature is generated by left-right asymmetric gut morphogenesis}, volume={144}, ISSN={["1477-9129"]}, DOI={10.1242/dev.143701}, abstractNote={Left-right (LR) asymmetry is a fundamental feature of internal anatomy, yet the emergence of morphological asymmetry remains one of the least understood phases of organogenesis. Asymmetric rotation of the intestine is directed by forces outside of the gut, but the morphogenetic events that generate anatomical asymmetry in other regions of the digestive tract remain unknown. Here we show that the mechanisms that drive the curvature of the stomach are intrinsic to the gut tube itself. The left wall of the primitive stomach expands more than the right wall, as the left epithelium becomes more polarized and undergoes radial rearrangement. These asymmetries exist across species, and are dependent on LR patterning genes, including FoxJ1, Nodal and Pitx2. Our findings have implications for how LR patterning manifests distinct types of morphological asymmetries in different contexts.}, number={8}, journal={DEVELOPMENT}, author={Davis, Adam and Amin, Nirav M. and Johnson, Caroline and Bagley, Kristen and Ghashghaei, H. Troy and Nascone-Yoder, Nanette}, year={2017}, month={Apr}, pages={1477–1483} }