@article{barbieri_cutright_ramesh_khan_efimenko_genzer_menegatti_2022, title={Potent Antibacterial Composite Nonwovens Functionalized with Bioactive Peptides and Polymers}, volume={8}, ISSN={["2196-7350"]}, url={https://doi.org/10.1002/admi.202201061}, DOI={10.1002/admi.202201061}, abstractNote={AbstractThis study presents a set of strategies for producing potent antibacterial fabrics by functionalizing nonwoven fabrics (NWFs) with antimicrobial peptides and polymers (AMPs). The incorporation of AMPs is initially optimized on 2D substrates by evaluating conjugation on a poly(maleic anhydride) copolymer coating versus adsorption on polycationic/anionic films and microgels. The evaluation of the resulting surfaces against S. aureus and E. coli highlights the superior antibacterial activity of poly‐ionic films loaded with daptomycin and polymyxin B as well as microgels featuring controlled release of bacitracin and polymyxin B. These formulations are translated onto spun‐bond polypropylene and poly(ethylene terephthalate) NWFs. The poly‐ionic coatings are either covalently anchored or physically adsorbed onto the surface of the fibers, while the microgels and antibacterial polymers are adsorbed and photo‐crosslinked thereon using a ultraviolet (UV)‐crosslinkable benzophenone‐based polymer. Selected formulations loaded with bacitracin and polymyxin B afford a 105‐fold reduction of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) in artificial sweat, respectively, on par with commercial antibacterial NWFs. The proposed antibacterial fabric, however, outperforms its commercial counterparts in terms of biocompatibility, showing virtually no adverse effect on human epidermal keratinocytes. Collectively, these results demonstrate affordable and scalable routes for developing antimicrobial NWFs that efficiently eliminate resilient pathogenic bacteria.}, journal={ADVANCED MATERIALS INTERFACES}, author={Barbieri, Eduardo and Cutright, Camden C. and Ramesh, Srivatsan and Khan, Saad A. and Efimenko, Kirill and Genzer, Jan and Menegatti, Stefano}, year={2022}, month={Aug} } @article{cutright_harris_ramesh_khan_genzer_menegatti_2021, title={Surface-Bound Microgels for Separation, Sensing, and Biomedical Applications}, volume={31}, ISSN={["1616-3028"]}, url={https://doi.org/10.1002/adfm.202104164}, DOI={10.1002/adfm.202104164}, abstractNote={AbstractThis study presents a comprehensive survey of microgel‐coated materials and their functional behavior, describing the complex interplay between the physicochemical and mechanical properties of the microgels and the chemical and morphological features of substrates. The cited literature is articulated in four main sections: i) properties of 2D and 3D substrates, ii) synthesis, modification, and characterization of the microgels, iii) deposition techniques and surface patterning, and iv) application of microgel‐coated surfaces focusing on separations, sensing, and biomedical applications. Each section discusses – by way of principles and examples – how the various design parameters work in concert to deliver functionality to the composite systems. The case studies presented herein are viewed through a multi‐scale lens. At the molecular level, the surface chemistry and the monomer make‐up of the microgels endow responsiveness to environmental and artificial physical and chemical cues. At the micro‐scale, the response effects shifts in size, mechanical, and optical properties, and affinity towards species in the surrounding liquid medium, ranging from small molecules to cells. These phenomena culminate at the macro‐scale in measurable, reversible, and reproducible effects, aiming in a myriad of directions, from lab‐scale to industrial applications.}, number={47}, journal={ADVANCED FUNCTIONAL MATERIALS}, publisher={Wiley}, author={Cutright, Camden C. and Harris, Jacob L. and Ramesh, Srivatsan and Khan, Saad A. and Genzer, Jan and Menegatti, Stefano}, year={2021}, month={Aug} } @article{cutright_finkelstein_orlowski_mcintosh_brotherton_fabiani_khan_genzer_menegatti_2020, title={Nonwoven fiber mats with thermo-responsive permeability to inorganic and organic electrolytes}, volume={616}, ISSN={["1873-3123"]}, DOI={10.1016/j.memsci.2020.118439}, abstractNote={This study presents the development and characterization of nonwoven fiber mats (NWFs) with stimuli-controlled permeability. An ensemble of membranes was initially constructed by coating the fibers of polypropylene NWFs with a layer of poly ((N-isopropyl acrylamide)-co-(acrylic acid)) (PNIPAm-co-AA) hydrogel. Different coatings were produced by varying the PNIPAm/AA monomer ratio between 3.9 and 18.6. The thermo-responsive layer is expanded at room temperature and contracts when heated above its lower critical solution temperature (LCST). The resulting membranes were first characterized via laser scanning microscopy and fluorescence confocal microscopy to evaluate the thickness and morphology of the hydrogel layer. Microscopy shows uniform coating of the fibers, with a thickness comparable to the fiber diameter, and homogeneous filling of the pore space. The permeability of the NWFs was then evaluated using different solutes, namely an inorganic salt (sodium chloride), an organic acid (citric acid), and an amphiphilic drug (Doxorubicin). These tests consistently show that the flux of the solute is (1) higher at temperatures > LCST, where the hydrogel layer collapses and opens the pore space, and (2) decreases at room temperature (