@article{jia_dirican_sun_chen_yan_zhu_dong_du_cheng_guo_et al._2019, title={Advanced ZnSnS3@rGO Anode Material for Superior Sodium-Ion and Lithium-Ion Storage with Ultralong Cycle Life}, volume={6}, ISSN={["2196-0216"]}, url={https://publons.com/publon/26924629/}, DOI={10.1002/celc.201801333}, abstractNote={Abstract A novel and facile approach has been utilized to synthesize zinc tin sulfide@reduced graphene oxide (ZnSnS 3 @rGO) through aqueous reaction of Na 2 SnO 3 and Zn(CH 3 COO) 2 , combined with a subsequent solvothermal reaction and an annealing process. The as‐prepared ZnSnS 3 @rGO nanocomposite exhibited an excellent sodium‐ and lithium‐ion‐storage performance with large specific capacity, high rate capability, and ultralong cycle life. When used in Na‐ion cells, the ZnSnS 3 @rGO nanocomposite delivered a capacity of 472.2 mAh g −1 at 100 mA g −1 and retained a specific capacity of 401.2 mAh g −1 after 200 cycles. In Li‐ion cells, the ZnSnS 3 @rGO nanocomposite delivered a capacity of 959.2 mAh g −1 at a current density of 100 mA g −1 and maintained a specific capacity of 551.3 mAh g −1 at a high current density of 1 A g −1 upon 500 cycles. The electrochemical performance results reveal that the integration of uniformly dispersed metal elements and an interconnected carbon matrix could help release the stress of volumetric excursion and provide fast electron/ion transport, leading to a remarkable electrochemical performance.}, number={4}, journal={CHEMELECTROCHEM}, author={Jia, Hao and Dirican, Mahmut and Sun, Na and Chen, Chen and Yan, Chaoyi and Zhu, Pei and Dong, Xia and Du, Zhuang and Cheng, Hui and Guo, Jiansheng and et al.}, year={2019}, month={Feb}, pages={1183–1191} } @article{chen_dirican_zhang_2019, title={CENTRIFUGAL SPINNING-HIGH RATE PRODUCTION OF NANOFIBERS}, ISBN={["978-0-323-51270-1"]}, url={https://publons.com/publon/26924630/}, DOI={10.1016/B978-0-323-51270-1.00010-8}, abstractNote={Nanofibers have attracted tremendous attention due to their flexibility, large surface area, and ease of modification, and they have been widely utilized in different applications such as filtration, tissue engineering, drug delivery, protective clothing, energy storage, etc. At this writing, the most commonly used method to produce nanofibers is electrospinning. However, the utilization of a high-voltage setup and the low production rate have become barriers to its use in large scale. Centrifugal spinning is an efficient approach to producing nanofibers from various materials. During centrifugal spinning, the polymer solution or polymer melt is ejected out of the rotating spinning head, and when the centrifugal force overcomes the surface tension of the polymer liquid material, the polymer jet undergoes a stretching process and is eventually deposited on the collector, forming solidified nanofibers. This chapter gives an overview of the history, working mechanism, influential parameters, and various applications of the centrifugal spinning method.}, journal={ELECTROSPINNING: NANOFABRICATION AND APPLICATIONS}, author={Chen, Chen and Dirican, Mahmut and Zhang, Xiangwu}, year={2019}, pages={321–338} } @article{jia_dirican_aksu_sun_chen_zhu_zhu_yan_li_ge_et al._2019, title={Carbon-enhanced centrifugally-spun SnSb/carbon microfiber composite as advanced anode material for sodium-ion battery}, volume={536}, ISSN={["1095-7103"]}, url={https://publons.com/publon/26924626/}, DOI={10.1016/j.jcis.2018.10.101}, abstractNote={Antimony tin (SnSb) based materials have become increasingly attractive as a potential anode material for sodium-ion batteries (SIBs) owing to their prominent merit of high capacity. However, cyclic stability and rate capability of SnSb anodes are currently hindered by their large volume change during repeated cycling, which results in severe capacity fading. Herein, we introduce carbon-coated centrifugally-spun [email protected] microfiber (CMF) composites as high-performance anodes for SIBs that can maintain their structural stability during repeated charge-discharge cycles. The centrifugal spinning method was performed to fabricate [email protected] due to its high speed, low cost, and large-scale fabrication features. More importantly, extra carbon coating by chemical vapor deposition (CVD) has been demonstrated as an effective method to improve the capacity retention and Coulombic efficiency of the [email protected] anode. Electrochemical test results indicated that the as-prepared [email protected]@C anode could deliver a large reversible capacity of 798 mA h∙g−1 at the 20th cycle as well as a high capacity retention of 86.8% and excellent Coulombic efficiency of 98.1% at the 100th cycle. It is, therefore, demonstrated that [email protected]@C composite is a promising anode material candidate for future high-performance SIBs.}, journal={JOURNAL OF COLLOID AND INTERFACE SCIENCE}, author={Jia, Hao and Dirican, Mahmut and Aksu, Cemile and Sun, Na and Chen, Chen and Zhu, Jiadeng and Zhu, Pei and Yan, Chaoyi and Li, Ya and Ge, Yeqian and et al.}, year={2019}, month={Feb}, pages={655–663} } @article{jia_dirican_sun_chen_zhu_yan_dong_du_guo_karaduman_et al._2019, title={SnS hollow nanofibers as anode materials for sodium-ion batteries with high capacity and ultra-long cycling stability}, volume={55}, ISSN={["1364-548X"]}, url={https://publons.com/publon/2973443/}, DOI={10.1039/c8cc07332e}, abstractNote={In this study, a novel anode material of SnS hollow nanofibers (SnS HNFs) was rationally synthesized by a facile process and demonstrated to be a promising anode candidate for sodium-ion batteries. The synergetic effect of unique hollow and porous microstructures of SnS HNFs led to high capacity and ultra-long cycling stability.}, number={4}, journal={CHEMICAL COMMUNICATIONS}, author={Jia, Hao and Dirican, Mahmut and Sun, Na and Chen, Chen and Zhu, Pei and Yan, Chaoyi and Dong, Xia and Du, Zhuang and Guo, Jiansheng and Karaduman, Yekta and et al.}, year={2019}, month={Jan}, pages={505–508} } @article{hafiz_chen_chen_queiroz_husain_2019, title={Utilising demand response for distribution service restoration to achieve grid resiliency against natural disasters}, volume={13}, ISSN={["1751-8695"]}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-85069476402&partnerID=MN8TOARS}, DOI={10.1049/iet-gtd.2018.6866}, abstractNote={The increased frequency of power outages due to natural disasters in recent years has highlighted the urgency of enhancing distribution grid resilience. The effective distribution service restoration (DSR) is an important measure for a resilient distribution grid. In this work, the authors demonstrate that DSR can be significantly improved by leveraging the flexibility provided by the inclusion of demand response (DR). The authors propose a framework for this by considering integrated control of household-level flexible appliances to vary the load demand at the distribution-grid level to improve DSR. The overall framework of the proposed system is modelled as a three-step method considering three optimization problems to (i) calculate feasible controllable aggregated load range for each bus, (ii) determine candidate buses to perform DR and their target load demand, and (iii) maintain the load level in each house through home energy management during the DSR, considering uncertainties in load and solar generation sequentially. The optimization problems are formulated as linear programming, mixed-integer linear programming, and multistage stochastic programming (solved using the stochastic dual dynamic programming) models. Case studies performed in the IEEE 123-node test feeder show improvements in resilience in terms of energy restored compared to the restoration process without DR.}, number={14}, journal={IET GENERATION TRANSMISSION & DISTRIBUTION}, publisher={Institution of Engineering and Technology (IET)}, author={Hafiz, Faeza and Chen, Bo and Chen, Chen and Queiroz, Anderson Rodrigo and Husain, Iqbal}, year={2019}, month={Jul}, pages={2942–2950} } @article{jia_dirican_chen_zhu_yan_dong_du_guo_wang_tang_et al._2018, title={Carbon-coated CoS@rGO anode material with enhanced cyclic stability for sodium storage}, volume={233}, ISSN={["1873-4979"]}, url={https://publons.com/publon/26924642/}, DOI={10.1016/j.matlet.2018.08.150}, abstractNote={Carbon-coated cobalt [email protected] graphene oxide ([email protected]@C) composite was innovatively synthesized by a simple solvothermal reaction and subsequent carbon coating process for use as the anode material in sodium-ion batteries (SIBs). In this composite structure, the rGO network and extra outer carbon coating worked synergically to achieve excellent electrode architecture stability upon long-term cycling. Specifically, the [email protected]@C composite anode demonstrated superior reversible capacity (706 mAh·g−1 at 100 mA·g−1 at the 1st cycle), high rate capability (374 mAh·g−1 at 1.6 A·g−1), and remarkably stable cycling performance (80% capacity preservation for up to 100 cycles) based on the synergistic action of rGO and carbon coating on CoS. In addition to improving the electrochemical performance of CoS anodes, this composite material strategy can be conveniently adapted to other metal-based anode designs to improve their cycling stability and promote their application in energy storage.}, journal={MATERIALS LETTERS}, author={Jia, Hao and Dirican, Mahmut and Chen, Chen and Zhu, Pei and Yan, Chaoyi and Dong, Xia and Du, Zhuang and Guo, Jiansheng and Wang, Jiasheng and Tang, Fangcheng and et al.}, year={2018}, month={Dec}, pages={158–161} } @article{jia_chen_oladele_tang_li_zhang_yan_2018, title={Cobalt doping of tin disulfide/reduced graphene oxide nanocomposites for enhanced pseudocapacitive sodium-ion storage}, volume={1}, ISSN={["2399-3669"]}, url={https://publons.com/publon/26924643/}, DOI={10.1038/s42004-018-0086-z}, abstractNote={Abstract Rechargeable sodium-ion batteries are receiving intense interest as a promising alternative to lithium-ion batteries, however, the absence of high-performance anode materials limits their further commercialization. Here we prepare cobalt-doped tin disulfide/reduced graphene oxide nanocomposites via a microwave-assisted hydrothermal approach. These nanocomposites maintain a capacity of 636.2 mAh g −1 after 120 cycles under a current density of 50 mA g −1 , and display a capacity of 328.3 mA h g −1 after 1500 cycles under a current density of 2 A g −1 . The quantitative capacitive analysis demonstrates that the electrochemical performance of the nanocomposite originates from the combined effects of cobalt and sulfur doping, resulting in the enhanced pseudocapacitive contribution (52.8 to 89.8% at 1 mV s −1 ) of tin disulfide. This work provides insight into tuning the structure of layered transition metal dichalcogenides via heteroatom doping to develop high-performance anode materials for sodium-ion batteries.}, journal={COMMUNICATIONS CHEMISTRY}, author={Jia, Hao and Chen, Chen and Oladele, Olabode and Tang, Yongan and Li, Guoqing and Zhang, Xiangwu and Yan, Fei}, year={2018}, month={Nov} } @article{zhu_zang_zhu_lu_chen_jiang_yan_dirican_selvan_kim_et al._2018, title={Effect of reduced graphene oxide reduction degree on the performance of polysulfide rejection in lithium-sulfur batteries}, volume={126}, ISSN={["1873-3891"]}, url={https://publons.com/publon/1678921/}, DOI={10.1016/j.carbon.2017.10.063}, abstractNote={Lithium-sulfur (Li-S) batteries are considered as a promising candidate for large-scale applications such as electrical vehicles (EVs) because of their high theoretical capacity, large energy density and low cost. However, due to the shuttling effect of polysulfides, the continuous capacity fading during cycling remains a substantial bumper for the practical use of Li-S batteries. Here, reduced graphene oxide (rGO) materials with different reduction degrees were used as the polysulfide inhibitor and were coated onto glass fiber separators to minimize the shutting of polysulfides. The influence of reduction degree on the effort of polysulfide rejection was investigated. The incorporation of rGO coating with higher reduction degree largely minimized the polysulfide shuttling, thus the Li-S cells with separators modified with high-reduction degree rGO was able to maintain a capacity of 733 mAh g−1 after 100 cycles and delivered a high capacity of 519 mAh g−1 at 2C, which were 42% and 90% higher than those of cells with separators coated with low-reduction degree rGO. Therefore, it was found that rGO with higher reduction degree demonstrated better polysulfide rejection performance than rGO with lower reduction degree. This study provides a promising strategy in the rGO selection for high-performance Li-S batteries.}, journal={CARBON}, publisher={Elsevier BV}, author={Zhu, Pei and Zang, Jun and Zhu, Jiadeng and Lu, Yao and Chen, Chen and Jiang, Mengjin and Yan, Chaoyi and Dirican, Mahmut and Selvan, R. Kalai and Kim, David and et al.}, year={2018}, month={Jan}, pages={594–600} } @article{jia_sun_dirican_li_chen_zhu_yan_zang_guo_tao_et al._2018, title={Electrospun Kraft Lignin/Cellulose Acetate-Derived Nanocarbon Network as an Anode for High-Performance Sodium-Ion Batteries}, volume={10}, ISSN={["1944-8244"]}, url={https://publons.com/publon/26924644/}, DOI={10.1021/acsami.8b13033}, abstractNote={An innovative nanocarbon network material was synthesized from electrospun kraft lignin and cellulose acetate blend nanofibers after carbonization at 1000 °C in a nitrogen atmosphere, and its electrochemical performance was evaluated as an anode material in sodium-ion batteries. Apart from its unique network architecture, introduced carbon material possesses high oxygen content of 13.26%, wide interplanar spacing of 0.384 nm, and large specific surface area of 540.95 m2·g-1. The electrochemical test results demonstrate that this new nanocarbon network structure delivers a reversible capacity of 340 mA h·g-1 at a current density of 50 mA·g-1 after 200 cycles and exhibits a high rate capacity by delivering a capacity of 103 mA h·g-1 at an increased current density of 400 mA·g-1. The present work rendered an innovative approach for preparing nanocarbon materials for energy-storage applications and could open up new avenues for novel nanocarbon fabrication from green and environmentally friendly raw materials.}, number={51}, journal={ACS APPLIED MATERIALS & INTERFACES}, author={Jia, Hao and Sun, Na and Dirican, Mahmut and Li, Ya and Chen, Chen and Zhu, Pei and Yan, Chaoyi and Zang, Jun and Guo, Jiansheng and Tao, Jinsong and et al.}, year={2018}, month={Dec}, pages={44368–44375} } @article{jia_dirican_zhu_chen_yan_zhu_li_guo_caydamli_zhang_et al._2018, title={High-performance SnSb@rGO@CMF composites as anode material for sodium-ion batteries through high-speed centrifugal spinning}, volume={752}, ISSN={["1873-4669"]}, url={https://doi.org/10.1016/j.jallcom.2018.04.141}, DOI={10.1016/j.jallcom.2018.04.141}, abstractNote={Antimony tin alloy (SnSb) has been regarded as a promising anode material for sodium-ion batteries due to its high capacity. However, the rapid capacity decay of SnSb anodes caused by volume changes during repeated cycles must be solved before they can be used in practical batteries. Here, we introduce centrifugally-spun [email protected]@CMF composite anode for sodium-ion batteries, which not only has high sodium storage capability but also maintains its structural integrity after repetitive cycles. [email protected]@CMF composite was prepared by high-speed and cost-effective centrifugal spinning and subsequent heat treatment processes. Electrochemical performance results demonstrated that [email protected]@CMF composite anode had excellent initial reversible capacity (350.3 mAh g−1), outstanding initial Coulombic efficiency (68.2%), and superior capacity retention (91.1%) over 200 cycles at 50 mA g−1. Therefore, centrifugally-spun [email protected][email protected] composite has great application prospect as an anode material for sodium-ion batteries.}, journal={JOURNAL OF ALLOYS AND COMPOUNDS}, publisher={Elsevier BV}, author={Jia, Hao and Dirican, Mahmut and Zhu, Jiadeng and Chen, Chen and Yan, Chaoyi and Zhu, Pei and Li, Ya and Guo, Jiansheng and Caydamli, Yavuz and Zhang, Xiangwu and et al.}, year={2018}, month={Jul}, pages={296–302} } @article{jia_dirican_chen_zhu_yan_li_zhu_li_guo_zhang_et al._2018, title={Rationally designed carbon coated ZnSnS3 nano cubes as high-performance anode for advanced sodium-ion batteries}, volume={292}, ISSN={["1873-3859"]}, url={https://publons.com/publon/16881651/}, DOI={10.1016/j.electacta.2018.09.184}, abstractNote={Metal sulfides have gradually gained attention as preferable anode materials in sodium-ion batteries (SIBs) due to their high theoretical capacities. In this work, we report for the first time the synthesis of carbon coated ZnSnS3 nanocubes (ZnSnS3@C NCs) as high-performance anode material for SIBs. The outer carbon coating surrounding the ZnSnS3 active material not only enhances the electronic conductivity of the anode but also increases the electrode reaction active sites. Thus, it can greatly improve the reversible capacity as well as homogenize the repeated volume changes of the active material and decrease the mechanical stress caused during the prolonged charge/discharge process, which could finally enable an enhanced electrode stability. Electrochemical test results demonstrated that the introduced ZnSnS3@C NC anode is capable of delivering a high reversible capacity of 661.4 mAh g−1 at a current density of 100 mA g−1 after 250 cycles (with capacity retention of 97.1%) and demonstrating a stable Coulombic efficiency of over 99%. To the best of our knowledge, both the reversible capacity and cycling stability performance introduced in this work are so far the best among metallic sulfur-based anodes and are even superior to some recently reported SnS2-based anodes.}, journal={ELECTROCHIMICA ACTA}, author={Jia, Hao and Dirican, Mahmut and Chen, Chen and Zhu, Pei and Yan, Chaoyi and Li, Ya and Zhu, Jiadeng and Li, Zhaoling and Guo, Jiansheng and Zhang, Xiangwu and et al.}, year={2018}, month={Dec}, pages={646–654} } @article{jia_dirican_chen_zhu_zhu_yan_li_dong_guo_zhang_et al._2018, title={Reduced Graphene Oxide-Incorporated SnSb@CNF Composites as Anodes for High-Performance Sodium-Ion Batteries}, volume={10}, ISSN={["1944-8244"]}, url={https://doi.org/10.1021/acsami.7b18921}, DOI={10.1021/acsami.7b18921}, abstractNote={Sodium-ion batteries (SIBs) are promising alternatives to lithium-ion batteries because of the low cost and natural abundance of sodium resources. Nevertheless, low energy density and poor cycling stability of current SIBs unfavorably hinder their practical implementation for the smart power grid and stationary storage applications. Antimony tin (SnSb) is one of the most promising anode materials for next-generation SIBs attributing to its high capacity, high abundance, and low toxicity. However, the practical application of SnSb anodes in SIBs is currently restricted because of their large volume changes during cycling, which result in serious pulverization and loss of electrical contact between the active material and the carbon conductor. Herein, we apply reduced graphene oxide (rGO)-incorporated SnSb@carbon nanofiber (SnSb@rGO@CNF) composite anodes in SIBs that can sustain their structural stability during prolonged charge-discharge cycles. Electrochemical performance results shed light on that the combination of rGO, CNF, and SnSb alloy led to a high-capacity anode (capacity of 490 mAh g-1  at the 10th cycle) with a high capacity retention of 87.2% and a large Coulombic efficiency of 97.9% at the 200th cycle. This work demonstrates that the SnSb@rGO@CNF composite is a potential and attractive anode material for next-generation, high-energy SIBs.}, number={11}, journal={ACS APPLIED MATERIALS & INTERFACES}, publisher={American Chemical Society (ACS)}, author={Jia, Hao and Dirican, Mahmut and Chen, Chen and Zhu, Jiadeng and Zhu, Pei and Yan, Chaoyi and Li, Ya and Dong, Xia and Guo, Jiansheng and Zhang, Xiangwu and et al.}, year={2018}, month={Mar}, pages={9696–9703} } @article{zhu_zhu_zang_chen_lu_jiang_yan_dirican_selvan_zhang_et al._2017, title={A novel bi-functional double-layer rGO-PVDF/PVDF composite nanofiber membrane separator with enhanced thermal stability and effective polysulfide inhibition for high-performance lithium-sulfur batteries}, volume={5}, ISSN={["2050-7496"]}, url={https://doi.org/10.1039/C7TA03301J}, DOI={10.1039/c7ta03301j}, abstractNote={A novel, bi-functional double-layer reduced graphene oxide (rGO)–polyvinylidene fluoride (PVDF)/PVDF membrane was fabricated by a simple electrospinning technique and was used as a promising separator for lithium–sulfur batteries. This double-layer membrane separator delivers two different functionalities: (i) the porous PVDF nanofiber framework in both rGO–PVDF and PVDF layers provides good thermal stability and maintains the structural integrity of the separator; and (ii) the conductive rGO–PVDF layer serves as a polysulfide inhibitor and ensures the fast transfer of lithium ions. Compared to conventional polypropylene membrane separators, this new separator design can significantly enhance the cycling stability and rate capability of the incorporated lithium–sulfur batteries. Overall, it is demonstrated that this new double-layer rGO–PVDF/PVDF composite membrane separator opens an alternate avenue in the structural design of high-performance lithium–sulfur batteries in dealing with multiple challenges.}, number={29}, journal={JOURNAL OF MATERIALS CHEMISTRY A}, publisher={Royal Society of Chemistry (RSC)}, author={Zhu, Pei and Zhu, Jiadeng and Zang, Jun and Chen, Chen and Lu, Yao and Jiang, Mengjin and Yan, Chaoyi and Dirican, Mahmut and Selvan, Ramakrishnan Kalai and Zhang, Xiangwu and et al.}, year={2017}, month={Aug}, pages={15096–15104} } @article{luo_li_zang_chen_zhu_qiao_cai_lu_zhang_wei_et al._2017, title={Carbon-Coated Magnesium Ferrite Nanofibers for Lithium-Ion Battery Anodes with Enhanced Cycling Performance}, volume={5}, ISSN={["2194-4296"]}, url={https://publons.com/publon/26924653/}, DOI={10.1002/ente.201600686}, abstractNote={Carbon coated magnesium ferrite (MgFe2O4@C) nanofibers have been successfully synthesised via electrospinning technology and the subsequent carbonization process using polydopamine (PDA) as carbon precursor. Scanning electron microscopy and transmission electron microscopy results show that nitrogen-doped carbon layers with different thicknesses are uniformly coated on the surface of MgFe2O4 nanofibers. When used as anode materials for lithium-ion batteries (LIBs), MgFe2O4@C nanofibers with a carbon thickness of 7 nm exhibit excellent cycling performance and rate capability compared with pristine MgFe2O4 and MgFe2O4@C nanofibers with carbon thicknesses of 4 nm and 15 nm, respectively. These nanofibers deliver high initial discharge and charge capacities of 1383 and 1044 mAh g-1, respectively, with coulombic efficiency of 75.5%. A reversible capacity of 926 mAh g-1 can be obtained after 200 cycles at 0.1 A g-1. Even at high rate of 1 A g-1 after 500 cycles, they still maintain a stable capacity of 610 mAh g-1 with a capapcity retention of 81.9%. It is, therefore, demonstrated that MgFe2O4@C nanofibers can be used as a potential anode candidate for LIBs.}, number={8}, journal={ENERGY TECHNOLOGY}, author={Luo, L. and Li, D. W. and Zang, J. and Chen, C. and Zhu, J. D. and Qiao, H. and Cai, Y. B. and Lu, K. Y. and Zhang, X. W. and Wei, Q. F. and et al.}, year={2017}, month={Aug}, pages={1364–1372} } @article{ge_zhu_dirican_jia_yanilmaz_lu_chen_qiu_zhang_2017, title={Fabrication and electrochemical behavior study of nano-fibrous sodium titanate composite}, volume={188}, ISSN={["1873-4979"]}, url={https://publons.com/publon/26924645/}, DOI={10.1016/j.matlet.2016.11.025}, abstractNote={Nanofiber structured Na2Ti3O7 was synthesized via electrospinning process which was further used as an anode material for sodium-ion batteries for the first time. One-dimensional construction of Na2Ti3O7 composite could contribute to better electrochemical activity. It was demonstrated that the capacity of Na2Ti3O7 nanofibers was significantly improved to 257.8 mAh g−1 at 30 mA g−1. Furthermore, the rate capability of Na2Ti3O7 nanofibers was significantly enhanced, showing charge capacities were 161.8, 116.5, and 72.4 mAh g−1 at 100, 200, and 400 mA g−1, respectively. Therefore, improved specific capacity and rate capability made Na2Ti3O7 nanofibers composite as a promising anode material for sodium-ion batteries.}, journal={MATERIALS LETTERS}, publisher={Elsevier BV}, author={Ge, Yeqian and Zhu, Jiadeng and Dirican, Mahmut and Jia, Hao and Yanilmaz, Meltem and Lu, Yao and Chen, Chen and Qiu, Yiping and Zhang, Xiangwu}, year={2017}, month={Feb}, pages={176–179} } @article{chen_li_zhu_lu_jiang_hu_shen_zhang_2017, title={In-situ formation of tin-antimony sulfide in nitrogen-sulfur Co-doped carbon nanofibers as high performance anode materials for sodium-ion batteries}, volume={120}, ISSN={["1873-3891"]}, url={https://doi.org/10.1016/j.carbon.2017.05.072}, DOI={10.1016/j.carbon.2017.05.072}, abstractNote={As potential alternatives to lithium-ion batteries in grid energy storage application, sodium-ion batteries (SIBs) have attracted tremendous attention. Absence of high-performance anode material remains a challenge to commercialize SIBs. Herein, a SnSbSx/porous carbon nanofiber (SnSbSx/PCNF) composite with superior performance is successfully prepared via electrospinning, followed by a sulfuration treatment. The as-prepared SnSbSx/PCNF composite exhibits a unique two-dimensional nano-sheet morphology. As a result, the SnSbSx/PCNFs can deliver a high reversible capacity of 566.7 mAh g−1 after 80 cycles and achieve good cycling stability and rate capability when used as anode materials for SIBs. The improved electrochemical performance of SnSbSx/PCNFs can be ascribed to the synergistic effects of SnSbSx nano-sheets and enhanced diffusion coefficient of Na+ in sulfurated PCNFs (SPCNFs), which can not only provide good electronic conductivity but also buffer the volume change of the SnSbSx nano-sheets during sodiation/desodiation process. Additionally, the sulfuration process generates a sulfur doping effect on the PCNFs, further enhancing their sodium storage ability. Therefore, the excellent Na-storage ability demonstrates SnSbSx/PCNFs a great potential as anode material for high-performance SIBs.}, journal={CARBON}, publisher={Elsevier BV}, author={Chen, Chen and Li, Guoqing and Zhu, Jiadeng and Lu, Yao and Jiang, Mengjin and Hu, Yi and Shen, Zhen and Zhang, Xiangwu}, year={2017}, month={Aug}, pages={380–391} } @article{luo_qiao_xu_li_zhu_chen_lu_zhu_zhang_wei_et al._2017, title={Tin nanoparticles embedded in ordered mesoporous carbon as high-performance anode for sodium-ion batteries}, volume={21}, ISSN={["1433-0768"]}, url={https://publons.com/publon/26924649/}, DOI={10.1007/s10008-016-3501-3}, number={5}, journal={JOURNAL OF SOLID STATE ELECTROCHEMISTRY}, author={Luo, L. and Qiao, H. and Xu, W. Z. and Li, D. W. and Zhu, J. D. and Chen, C. and Lu, Y. and Zhu, P. and Zhang, X. W. and Wei, Q. F. and et al.}, year={2017}, month={May}, pages={1385–1395} } @article{zhu_ge_kim_lu_chen_jiang_zhang_2016, title={A novel separator coated by carbon for achieving exceptional high performance lithium-sulfur batteries}, volume={20}, ISSN={["2211-3282"]}, url={https://doi.org/10.1016/j.nanoen.2015.12.022}, DOI={10.1016/j.nanoen.2015.12.022}, abstractNote={Lithium-sulfur batteries have received intense attention because of their high theoretical capacity, low cost and environmental friendliness. However, low active material utilization and poor cycle life limit their practical applications. Here, we report a strategy to obtain high capacity with long cycle life and rapid charge rate by introducing a carbon coating on the separator. Excellent cycling performance with a high capacity 956 mAh g−1 after 200 cycles and outstanding high-rate response up to 4 C are achieved, which are among the best reports so far. High electrochemical performance can be obtained even at a high sulfur loading of 3.37 mg cm−2. Such improved results could be ascribed to the conductive carbon coating, which not only reduces the cell resistance but blocks the diffusion of soluble polysulfides avoiding shuttle effect during cycling. This study demonstrates a feasible, low cost and scalable approach to address the long-term cycling challenge for lithium-sulfur batteries.}, journal={NANO ENERGY}, publisher={Elsevier BV}, author={Zhu, Jiadeng and Ge, Yeqian and Kim, David and Lu, Yao and Chen, Chen and Jiang, Mengjin and Zhang, Xiangwu}, year={2016}, month={Feb}, pages={176–184} } @article{chen_li_lu_zhu_jiang_hu_cao_zhang_2016, title={Chemical vapor deposited MoS2/electrospun carbon nanofiber composite as anode material for high-performance sodium-ion batteries}, volume={222}, ISSN={["1873-3859"]}, url={https://publons.com/publon/26924666/}, DOI={10.1016/j.electacta.2016.11.170}, abstractNote={Due to its high theoretical capacity and unique layered structure, MoS2 has attracted attention as a sodium-ion battery anode material. However, the electrochemical performance of MoS2 based anodes is hindered by their low intrinsic conductivity and large volume change during cycling. In this report, nano-sized MoS2 sheets are synthesized using a scalable chemical vapor deposition method on the surface of electrospun carbon nanofibers (CNFs). The morphology of the resultant MoS2@CNFs is investigated by scanning electron microscopy, transmission electron microscopy and X-ray diffraction, while their electrochemical performance is studied using cyclic voltammetry and galvanostatic charge-discharge. The results demonstrate that a strong interconnection between MoS2 nanosheets and CNFs is formed and the conductive network of CNFs is beneficial for the sodium ion kinetics. When investigated as an anode for sodium-ion batteries, a high reversible capacity of 380 mA h g−1 is obtained after 50 cycles with good cycling stability. In particular, MoS2@CNFs can deliver a capacity of 198 mA h g−1 under a high current density of 1 A g−1 after 500 cycles, indicating their great potential as anode material for long-life sodium-ion batteries.}, journal={ELECTROCHIMICA ACTA}, publisher={Elsevier BV}, author={Chen, Chen and Li, Guoqing and Lu, Yao and Zhu, Jiadeng and Jiang, Mengjin and Hu, Yi and Cao, Linyou and Zhang, Xiangwu}, year={2016}, month={Dec}, pages={1751–1760} } @article{lu_fu_zhu_chen_yanilmaz_dirican_ge_jiang_zhang_2016, title={Comparing the structures and sodium storage properties of centrifugally spun SnO2 microfiber anodes with/without chemical vapor deposition}, volume={51}, ISSN={["1573-4803"]}, url={https://publons.com/publon/26924656/}, DOI={10.1007/s10853-016-9768-z}, number={9}, journal={JOURNAL OF MATERIALS SCIENCE}, publisher={Springer Nature}, author={Lu, Yao and Fu, Kun and Zhu, Jiadeng and Chen, Chen and Yanilmaz, Meltem and Dirican, Mahmut and Ge, Yeqian and Jiang, Han and Zhang, Xiangwu}, year={2016}, month={May}, pages={4549–4558} } @article{luo_xu_xia_fei_zhu_chen_lu_wei_qiao_zhang_et al._2016, title={Electrospun ZnO-SnO2 composite nanofibers with enhanced electrochemical performance as lithium-ion anodes}, volume={42}, ISSN={["1873-3956"]}, url={https://publons.com/publon/26924662/}, DOI={10.1016/j.ceramint.2016.03.211}, abstractNote={ZnO–SnO2 composite nanofibers with different structures were synthesized by a simple electrospinning approach with subsequent calcination at three different temperatures using polyacrylonitrile as the polymer precursor. The electrochemical performance of the composites for use as anode materials in lithium-ion batteries were investigated. It was found that the ZnO–SnO2 composite nanofibers calcined at 700 °C showed excellent lithium storage properties in terms of cycling stability and rate capability, compared to those calcined at 800 and 900 °C, respectively. ZnO–SnO2 composite nanofibers calcined at 700 °C not only delivered high initial discharge and charge capacities of 1450 and 1101 mAh g−1, respectively, with a 75.9% coulombic efficiency, but also maintained a high reversible capacity of 560 mAh g−1 at a current density of 0.1 A g−1 after 100 cycles. Additionally, a high reversible capacity of 591 mAh g−1 was obtained when the current density returned to 0.1 A g−1 after 50 cycling at a high current density of 2 A g−1. The superior electrochemical performance of ZnO–SnO2 composite nanofibers can be attributed to the unique nanofibrous structure, the smaller particle size and smaller fiber diameter as well as the porous structure and synergistic effect between ZnO and SnO2.}, number={9}, journal={CERAMICS INTERNATIONAL}, author={Luo, L. and Xu, W. Z. and Xia, Z. K. and Fei, Y. Q. and Zhu, J. D. and Chen, C. and Lu, Y. and Wei, Q. F. and Qiao, H. and Zhang, X. W. and et al.}, year={2016}, month={Jul}, pages={10826–10832} } @article{zhu_yildirim_aly_shen_chen_lu_jiang_kim_tonelli_pasquinelli_et al._2016, title={Hierarchical multi-component nanofiber separators for lithium polysulfide capture in lithium-sulfur batteries: an experimental and molecular modeling study}, volume={4}, ISSN={["2050-7496"]}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-84984804707&partnerID=MN8TOARS}, DOI={10.1039/c6ta04577d}, abstractNote={Sulfur (S) has been considered as a promising cathode candidate for lithium batteries due to its high theoretical specific capacity and energy density. However, the low active material utilization, severe capacity fading, and short lifespan of the resultant lithium–sulfur (Li–S) batteries have greatly hindered their practicality. In this work, a multi-functional polyacrylonitrile/silica nanofiber membrane with an integral ultralight and thin multi-walled carbon nanotube sheet is presented and it provides a new approach to significantly improve the overall electrochemical performance of Li–S batteries. The experimental results are in agreement with molecular modeling studies based on density functional theory and Monte Carlo simulations. Remarkably, this design is favorable for the fast diffusion of both lithium ions and electrons and the mitigation of the diffusion of polysulfides. As a consequence, a high reversible capacity of 741 mA h g−1 at 0.2C after 100 cycles with excellent cyclability and high-rate performance (627 mA h g−1 at 1C) are achieved even with a high sulfur loading of 70 wt% in the cathode, revealing its great potential for energy storage applications. Moreover, a capacity of 426 mA h g−1 is retained after 300 cycles at a high current density of 2C. These results represent a major step forward in the progress of Li–S battery technologies.}, number={35}, journal={JOURNAL OF MATERIALS CHEMISTRY A}, publisher={Royal Society of Chemistry (RSC)}, author={Zhu, Jiadeng and Yildirim, Erol and Aly, Karim and Shen, Jialong and Chen, Chen and Lu, Yao and Jiang, Mengjin and Kim, David and Tonelli, Alan E. and Pasquinelli, Melissa A. and et al.}, year={2016}, pages={13572–13581} } @article{zhu_chen_lu_zang_jiang_kim_zhang_2016, title={Highly porous polyacrylonitrile/graphene oxide membrane separator exhibiting excellent anti-self-discharge feature for high-performance lithium-sulfur batteries}, volume={101}, ISSN={["1873-3891"]}, url={https://doi.org/10.1016/j.carbon.2016.02.007}, DOI={10.1016/j.carbon.2016.02.007}, abstractNote={Lithium–sulfur (Li–S) batteries have been considered as a promising candidate for next-generation energy-storage devices due to their high theoretical capacity and energy density. However, the severe self-discharge behavior of Li–S batteries strongly limits their use in practical applications. Here, we report a sustainable and highly porous polyacrylonitrile/graphene oxide (PAN/GO) nanofiber membrane separator that simultaneously enables large capacity and excellent anti-self-discharge capability for lithium–sulfur batteries. A low retention loss (5%) can be achieved even after a resting time of 24 h. Besides benefitting from the highly porous structure and excellent electrolyte wettability of the nanofiber separator, the improved performance can also be ascribed to the excellent barrier effects caused by the relatively high energy binding between –C≡N and Li2S/polysulfides and the electrostatic interactions between GO and negatively charged species (Sn2−). It is, therefore, demonstrated that this GO incorporated PAN nanofiber separator with highly porous structure and excellent electrolyte wettability is a promising separator candidate for high-performance Li–S batteries.}, journal={CARBON}, publisher={Elsevier BV}, author={Zhu, Jiadeng and Chen, Chen and Lu, Yao and Zang, Jun and Jiang, Mengjin and Kim, David and Zhang, Xiangwu}, year={2016}, month={May}, pages={272–280} } @article{jiang_zhu_chen_lu_ge_zhang_2016, title={Poly(vinyl Alcohol) Borate Gel Polymer Electrolytes Prepared by Electrodeposition and Their Application in Electrochemical Supercapacitors}, volume={8}, ISSN={["1944-8244"]}, url={https://publons.com/publon/26924655/}, DOI={10.1021/acsami.5b11984}, abstractNote={Gel polymer electrolytes (GPEs) have been studied for preparing flexible and compact electrochemical energy storage devices. However, the preparation and use of GPEs are complex, and most GPEs prepared through traditional methods do not have good wettability with the electrodes, which retard them from achieving their performance potential. In this study, these problems are addressed by conceiving and implementing a simple, but effective, method of electrodepositing poly(vinyl alcohol) potassium borate (PVAPB) GPEs directly onto the surfaces of active carbon electrodes for electrochemical supercapacitors. PVAPB GPEs serve as both the electrolyte and the separator in the assembled supercapacitors, and their scale and shape are determined solely by the geometry of the electrodes. PVAPB GPEs have good bonding to the active electrode materials, leading to excellent and stable electrochemical performance of the supercapacitors. The electrochemical performance of PVAPB GPEs and supercapacitors can be manipulated simply by adjusting the concentration of KCl salt used during the electrodeposition process. With a 0.9 M KCl concentration, the as-prepared supercapacitors deliver a specific capacitance of 65.9 F g(-1) at a current density of 0.1 A g(-1) and retain more than 95% capacitance after 2000 charge/discharge cycles at a current density of 1 A g(-1). These supercapacitors also exhibit intelligent high voltage self-protection function due to the electrolysis-induced cross-linking effect of PVAPB GPEs.}, number={5}, journal={ACS APPLIED MATERIALS & INTERFACES}, publisher={American Chemical Society (ACS)}, author={Jiang, Mengjin and Zhu, Jiadeng and Chen, Chen and Lu, Yao and Ge, Yeqian and Zhang, Xiangwu}, year={2016}, month={Feb}, pages={3473–3481} } @article{zhu_lu_chen_ge_jasper_leary_li_jiang_zhang_2016, title={Porous one-dimensional carbon/iron oxide composite for rechargeable lithium-ion batteries with high and stable capacity}, volume={672}, ISSN={["1873-4669"]}, url={https://doi.org/10.1016/j.jallcom.2016.02.160}, DOI={10.1016/j.jallcom.2016.02.160}, abstractNote={Hematite iron oxide (α-Fe2O3) is considered to be a prospective anode material for lithium-ion batteries (LIBs) because of its high theoretical capacity (1007 mAh g−1), nontoxicity, and low cost. However, the low electrical conductivity and large volume change during Li insertion/extraction of α-Fe2O3 hinder its use in practical batteries. In this study, carbon-coated α-Fe2O3 nanofibers, prepared via an electrospinning method followed by a thermal treatment process, are employed as the anode material for LIBs. The as-prepared porous nanofibers with a carbon content of 12.5 wt% show improved cycling performance and rate capability. They can still deliver a high and stable capacity of 715 mAh g−1 even at superior high current density of 1000 mA g−1 after 200 cycles with a large Coulombic efficiency of 99.2%. Such improved electrochemical performance can be assigned to their unique porous fabric structure as well as the conductive carbon coating which shorten the distance for Li ion transport, enhancing Li ion reversibility and kinetic properties. It is, therefore, demonstrated that carbon-coated α-Fe2O3 nanofiber prepared under optimized conditions is a promising anode material candidate for LIBs.}, journal={JOURNAL OF ALLOYS AND COMPOUNDS}, publisher={Elsevier BV}, author={Zhu, Jiadeng and Lu, Yao and Chen, Chen and Ge, Yeqian and Jasper, Samuel and Leary, Jennifer D. and Li, Dawei and Jiang, Mengjin and Zhang, Xiangwu}, year={2016}, month={Jul}, pages={79–85} } @article{jiang_zhu_chen_lu_pampal_luo_zhu_zhang_2016, title={Superior high-voltage aqueous carbon/ carbon supercapacitors operating with in situ electrodeposited polyvinyl alcohol borate gel polymer electrolytes}, volume={4}, ISSN={["2050-7496"]}, url={https://publons.com/publon/26924664/}, DOI={10.1039/c6ta07063a}, abstractNote={Electrodeposited polyvinyl alcohol borate (PVAB) aqueous gel polymer electrolytes (GPEs) have been found to possess excellent high-voltage stability and high ionic conductivity which are promising in building aqueous supercapacitors with high operating voltage and good electrochemical performance. In this study, PVAB GPEs were formed directly on activated carbon electrodes by in situ electrodeposition to serve as both electrolytes and separators for high-voltage aqueous carbon/carbon supercapacitors. The morphology and structure of the prepared PVAB GPE layers were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction. The electrochemical performance of supercapacitors using PVAB GPEs was tested and compared with those of supercapacitors using neutral salt aqueous electrolytes and organic electrolytes. The results show that the PVA molecules in PVAB GPEs are in the amorphous state and crosslinked by O → B− coordination bonds. The supercapacitors using PVAB GPEs can operate stably at 2 V, and no drastic electrolysis is observed in these supercapacitors even at 4 V. Among all the PVABs, PVA potassium borate (PVAPB) GPEs possess the best ionic conductivity. The high energy densities of 12.47 and 7.14 W h kg−1 can be achieved for the supercapacitor using the PVAPB GPE at the current densities of 0.2 and 2 A g−1, respectively, which are better than those of supercapacitors using 1 M Li2SO4 aqueous electrolyte and 1 M LiPF6 organic electrolyte especially at high current densities. The reversible ionization of water molecules cooperating with the reversible formation of O → B− coordination bonds is considered to play a critical role in the ionic transportation of PVAB GPEs.}, number={42}, journal={JOURNAL OF MATERIALS CHEMISTRY A}, publisher={Royal Society of Chemistry (RSC)}, author={Jiang, Mengjin and Zhu, Jiadeng and Chen, Chen and Lu, Yao and Pampal, Esra Serife and Luo, Lei and Zhu, Pei and Zhang, Xiangwu}, year={2016}, pages={16588–16596} } @article{chen_lu_ge_zhu_jiang_li_hu_zhang_2016, title={Synthesis of Nitrogen-Doped Electrospun Carbon Nanofibers as Anode Material for High-Performance Sodium-Ion Batteries}, volume={4}, ISSN={["2194-4296"]}, url={https://doi.org/10.1002/ente.201600205}, DOI={10.1002/ente.201600205}, abstractNote={Nitrogen-doped carbon nanofibers (CNFs) were synthesized using a facile electrospinning technique with the addition of urea as a nitrogen-doping agent. The amount of urea was selectively adjusted to control the degree and effectiveness of N-doping. The morphology of N-doped CNFs was investigated by scanning electron microscopy, transmission electron microscopy, and X-ray diffraction, whereas their electrochemical performance was studied using cyclic voltammetry and galvanostatic charge–discharge experiments. The nitrogen content of N-doped CNFs increased significantly from 11.31 % to 19.06 % when the doping amount of urea increased from 0 % to 30 %. N-doping also played an important role in improving the electrochemical performance of the CNFs by introducing more defects in the carbon structure. Results showed that N-doped CNFs with the highest nitrogen content (19.06 %) exhibited the largest reversible capacity of 354 mAh g−1 under a current density of 50 mA g−1; and when the current density was increased to 1 A g−1, a capacity of 193 mAh g−1 was still maintained. It is, therefore, demonstrated that N-doped CNFs have great potential as suitable sodium-ion battery anode material.}, number={11}, journal={ENERGY TECHNOLOGY}, publisher={Wiley}, author={Chen, Chen and Lu, Yao and Ge, Yeqian and Zhu, Jiadeng and Jiang, Han and Li, Yongqiang and Hu, Yi and Zhang, Xiangwu}, year={2016}, month={Nov}, pages={1440–1449} } @article{zhu_yanilmaz_fu_chen_lu_ge_kim_zhang_2016, title={Understanding glass fiber membrane used as a novel separator for lithium-sulfur batteries}, volume={504}, ISSN={["1873-3123"]}, url={https://publons.com/publon/26924654/}, DOI={10.1016/j.memsci.2016.01.020}, abstractNote={Glass fiber (GF) membrane is evaluated as a potential separator for lithium–sulfur batteries. It is found that GF membrane has a highly porous structure with superior thermal stability, resulting in high liquid electrolyte uptake and enhanced electrochemical performance. Li–S cells using GF membrane as the separator can retain a capacity of 617 mA h g−1 after 100 cycles at a current density of 0.2 C, which is 42% higher than that of cells using commercial microporous polypropylene separator. During rate capability tests, the capacity of Li–S cells using GF membrane decreases slowly from the reversible capacity of 616 mA h g−1 at 0.2 C to 505, 394 and 262 mA h g−1 at 0.5 C, 1 C, and 2 C, respectively. It should be noted that these cells can still deliver a high capacity of 587 mA h g−1 with a high retention of 95% when the current density is lowered back to 0.2 C. The improved cycling and rate performance are ascribed to the fact that the highly porous GF membrane can increase the intake of soluble polysulfide intermediates and slow down their rapid diffusion to the Li anode side, which can not only improve the utilization of active material, but help protect the Li anode surface as well.}, journal={JOURNAL OF MEMBRANE SCIENCE}, publisher={Elsevier BV}, author={Zhu, Jiadeng and Yanilmaz, Meltem and Fu, Kun and Chen, Chen and Lu, Yao and Ge, Yeqian and Kim, David and Zhang, Xiangwu}, year={2016}, month={Apr}, pages={89–96} } @article{lu_fu_zhang_li_chen_zhu_yanilmaz_dirican_zhang_2015, title={Centrifugal spinning: A novel approach to fabricate porous carbon fibers as binder-free electrodes for electric double-layer capacitors}, volume={273}, ISSN={["1873-2755"]}, url={https://doi.org/10.1016/j.jpowsour.2014.09.130}, DOI={10.1016/j.jpowsour.2014.09.130}, abstractNote={Carbon nanofibers (CNFs), among various carbonaceous candidates for electric double-layer capacitor (EDLC) electrodes, draw extensive attention because their one-dimensional architecture offers both shortened electron pathways and high ion-accessible sites. Creating porous structures on CNFs yields larger surface area and enhanced capacitive performance. Herein, porous carbon nanofibers (PCNFs) were synthesized via centrifugal spinning of polyacrylonitrile (PAN)/poly(methyl methacrylate) (PMMA) solutions combined with thermal treatment and were used as binder-free EDLC electrodes. Three precursor fibers with PAN/PMMA weight ratios of 9/1, 7/3 and 5/5 were prepared and carbonized at 700, 800, and 900 °C, respectively. The highest specific capacitance obtained was 144 F g−1 at 0.1 A g−1 with a rate capability of 74% from 0.1 to 2 A g−1 by PCNFs prepared with PAN/PMMA weight ratio of 7/3 at 900 °C. These PCNFs also showed stable cycling performance. The present work demonstrates that PCNFs are promising EDLC electrode candidate and centrifugal spinning offers a simple, cost-effective strategy to produce PCNFs.}, journal={JOURNAL OF POWER SOURCES}, publisher={Elsevier BV}, author={Lu, Yao and Fu, Kun and Zhang, Shu and Li, Ying and Chen, Chen and Zhu, Jiadeng and Yanilmaz, Meltem and Dirican, Mahmut and Zhang, Xiangwu}, year={2015}, month={Jan}, pages={502–510} } @article{jiang_ge_fu_lu_chen_zhu_dirican_zhang_2015, title={Centrifugally-spun tin-containing carbon nanofibers as anode material for lithium-ion batteries}, volume={50}, ISSN={["1573-4803"]}, url={https://publons.com/publon/26924667/}, DOI={10.1007/s10853-014-8666-5}, number={3}, journal={JOURNAL OF MATERIALS SCIENCE}, publisher={Springer Nature}, author={Jiang, Han and Ge, Yeqian and Fu, Kun and Lu, Yao and Chen, Chen and Zhu, Jiadeng and Dirican, Mahmut and Zhang, Xiangwu}, year={2015}, month={Feb}, pages={1094–1102} } @article{ge_jiang_zhu_lu_chen_hu_qiu_zhang_2015, title={High cyclability of carbon-coated TiO2 nanoparticles as anode for sodium-ion batteries}, volume={157}, ISSN={["1873-3859"]}, url={https://publons.com/publon/10720328/}, DOI={10.1016/j.electacta.2015.01.086}, abstractNote={Owing to the merits of good chemical stability, elemental abundance and nontoxicity, titanium dioxide (TiO2) has drawn increasing attraction for use as anode material in sodium-ion batteries. Nanostructured TiO2 was able to achieve high energy density. However, nanosized TiO2 is typically electrochemical instable, which leads to poor cycling performance. In order to improve the cycling stability, carbon from thermolysis of poly(vinyl pyrrolidone) was coated onto TiO2 nanoparticles. Electronic conductivity and electrochemical stability were enhanced by coating carbon onto TiO2 nanoparticles. The resultant carbon-coated TiO2 nanoparticles exhibited high reversible capacity (242.3 mAh g−1), high coulombic efficiency (97.8%), and good capacity retention (87.0%) at 30 mA g−1 over 100 cycles. By comparison, untreated TiO2 nanoparticles showed comparable reversible capacity (237.3 mAh g−1) and coulombic efficiency (96.2%), but poor capacity retention (53.2%) under the same condition. The rate performance of carbon-coated TiO2 nanoparticles was also displayed as high as 127.6 mAh g−1 at a current density of 800 mA g−1. The improved cycling performance and rate capability were mostly attributed to protective carbon layer helping stablize solid electrolyte interface formation of TiO2 nanoparticles and improving the electronic conductivity. Therefore, it is demonstrated that carbon-coated TiO2 nanoparticles are promising anode candidate for sodium-ion batteries.}, journal={ELECTROCHIMICA ACTA}, publisher={Elsevier BV}, author={Ge, Yeqian and Jiang, Han and Zhu, Jiadeng and Lu, Yao and Chen, Chen and Hu, Yi and Qiu, Yiping and Zhang, Xiangwu}, year={2015}, month={Mar}, pages={142–148} } @article{li_lv_zhu_lu_chen_zhang_wei_2015, title={NiCu Alloy Nanoparticle-Loaded Carbon Nanofibers for Phenolic Biosensor Applications}, volume={15}, ISSN={["1424-8220"]}, url={https://publons.com/publon/26924676/}, DOI={10.3390/s151129419}, abstractNote={NiCu alloy nanoparticle-loaded carbon nanofibers (NiCuCNFs) were fabricated by a combination of electrospinning and carbonization methods. A series of characterizations, including SEM, TEM and XRD, were employed to study the NiCuCNFs. The as-prepared NiCuCNFs were then mixed with laccase (Lac) and Nafion to form a novel biosensor. NiCuCNFs successfully achieved the direct electron transfer of Lac. Cyclic voltammetry and linear sweep voltammetry were used to study the electrochemical properties of the biosensor. The finally prepared biosensor showed favorable electrocatalytic effects toward hydroquinone. The detection limit was 90 nM (S/N = 3), the sensitivity was 1.5 µA µM−1, the detection linear range was 4 × 10−7–2.37 × 10−6 M. In addition, this biosensor exhibited satisfactory repeatability, reproducibility, anti-interference properties and stability. Besides, the sensor achieved the detection of hydroquinone in lake water.}, number={11}, journal={SENSORS}, publisher={MDPI AG}, author={Li, Dawei and Lv, Pengfei and Zhu, Jiadeng and Lu, Yao and Chen, Chen and Zhang, Xiangwu and Wei, Qufu}, year={2015}, month={Nov}, pages={29419–29433} } @article{zhu_chen_lu_ge_jiang_fu_zhang_2015, title={Nitrogen-doped carbon nanofibers derived from polyacrylonitrile for use as anode material in sodium-ion batteries}, volume={94}, ISSN={["1873-3891"]}, url={https://publons.com/publon/26924672/}, DOI={10.1016/j.carbon.2015.06.076}, abstractNote={Nitrogen-doped carbon nanofibers (N-CNFs) derived from polyacrylonitrile were successfully synthesized by a combination of electrospinning and thermal treatment processes. The as-prepared N-CNFs were used as anode material for sodium-ion batteries due to their unique fabric and weakly-ordered turbostratic structure as well as large spacing between graphene layers. Results show that N-CNFs carbonized at 800 °C delivered a high reversible capacity of 293 mAh g−1 at a current density of 50 mA g−1 in the first cycle. Even though the first-cycle Coulombic efficiency was 64%, it increased to nearly 100% only after a few initial cycles. Additionally, these N-CNFs showed excellent cycling and high-rate performance, and maintained a capacity of up to 150 mAh g−1 even at an extremely high current density of 1000 mA g−1 for over 200 cycles. It is, therefore, demonstrated that N-CNFs prepared under appropriate conditions are promising anode material candidate for sodium-ion batteries.}, journal={CARBON}, publisher={Elsevier BV}, author={Zhu, Jiadeng and Chen, Chen and Lu, Yao and Ge, Yeqian and Jiang, Han and Fu, Kun and Zhang, Xiangwu}, year={2015}, month={Nov}, pages={189–195} } @article{ge_zhu_lu_chen_qiu_zhang_2015, title={The study on structure and electrochemical sodiation of one-dimensional nanocrystalline TiO2@C nanofiber composites}, volume={176}, ISSN={["1873-3859"]}, url={https://publons.com/publon/26924674/}, DOI={10.1016/j.electacta.2015.07.105}, abstractNote={Titanium dioxide (TiO2) is a prospective anode candidate for sodium-ion batteries, owing to the advantages of good chemical stability, elemental abundance and nontoxicity. In this work, TiO2 embedded in carbon nanofiber (TiO2@CNF) composites are prepared for high-performance sodium-ion batteries by electrospinning and subsequent heat treatment in N2 at different temperatures. With increase in heat-treatment temperature, the diameter of nanofibers decreases and the crystal phase partially transforms from anatase to rutile. Among all composites, the TiO2@CNF composite treated at 550 °C has anatase structure and exhibits the highest initial reversible capacity (237.3 mAh g−1), largest initial coulombic efficiency (68.2%), and superior capacity retention (100.3%) over 100 cycles at 30 mA g−1. Whereas, the TiO2@CNF composite treated at 650 °C is 28.23% rutile and 71.77% anatase, and shows the best rate capability of 159.1 mAh g−1 even at current density of 800 mA g−1. It is, therefore, demonstrated that TiO2@CNF composites prepared with appropriate conditions are superior anode material for sodium-ion batteries.}, journal={ELECTROCHIMICA ACTA}, publisher={Elsevier BV}, author={Ge, Yeqian and Zhu, Jiadeng and Lu, Yao and Chen, Chen and Qiu, Yiping and Zhang, Xiangwu}, year={2015}, month={Sep}, pages={989–996} } @article{chen_fu_lu_zhu_xue_hu_zhang_2015, title={Use of a tin antimony alloy-filled porous carbon nanofiber composite as an anode in sodium-ion batteries}, volume={5}, ISSN={["2046-2069"]}, url={https://publons.com/publon/26924669/}, DOI={10.1039/c5ra01729g}, abstractNote={Lithium-ion battery is currently the dominant energy storage technology for electronic devices and electric vehicles. However, the predictable rising cost of lithium raw materials has attracted increasing interest in less expensive rivals, such as sodium-ion battery. In this work, a tin antimony (SnSb) alloy-filled porous carbon nanofiber composite was prepared as a sodium-ion battery anode material by a simple electrospinning method with subsequent thermal treatment. The spinning solution contained antimony tin oxide nanoparticles as the SnSb alloy precursor, polyacrylonitrile as the carbon precursor, and polymethyl methacrylate (PMMA) as the pore generator. The resultant SnSb@C nanofiber composite formed a continuous conductive network, which was favorable for enhancing its electrochemical performance. The presence of the SnSb alloy significantly increased the energy storage capacity of the composite due to its high theoretical capacity. The porous structure created by the decomposition of the PMMA polymer provided a free space to buffer the volume change of the SnSb alloy during the sodiation–desodiation process. The resultant SnSb@C nanofiber composite exhibited high capacity and a stable rate capability, and it was demonstrated to be a promising anode candidate for sodium-ion batteries.}, number={39}, journal={RSC ADVANCES}, publisher={Royal Society of Chemistry (RSC)}, author={Chen, Chen and Fu, Kun and Lu, Yao and Zhu, Jiadeng and Xue, Leigang and Hu, Yi and Zhang, Xiangwu}, year={2015}, pages={30793–30800} } @article{fu_lu_dirican_chen_yanilmaz_shi_bradford_zhang_2014, title={Chamber-confined silicon-carbon nanofiber composites for prolonged cycling life of Li-ion batteries}, volume={6}, ISSN={["2040-3372"]}, url={https://publons.com/publon/26924684/}, DOI={10.1039/c4nr00518j}, abstractNote={Silicon is a promising high capacity (4200 mA h g(-1)) anode material for lithium ion batteries but the significant volume change (over 300%) of silicon during lithiation/delithiation remains a challenge in terms of silicon pulverization and solid-electrolyte-interphase (SEI) accumulation in the silicon composite electrode. To alleviate the volumetric change of silicon, we built a flexible and self-supporting carbon-enhanced carbon nanofiber (CNF) structure with vacant chamber to encapsulate Si nanoparticles (vacant Si@CNF@C). This composite was tested directly without any polymer and current collector. The confined vacant chamber allowed the increasing volume of silicon and SEI accumulates to be well retained for a long cycle life. This chamber-confined silicon-carbon nanofiber composite exhibited an improved performance in terms of good cycling performance (620 mA h g(-1)), high coulombic efficiency (99%), and good capacity retention (80%) after 200 cycles. This self-supported silicon-carbon nanofiber structure showed high flexibility and good electrochemical performance for the potential as flexible electrode for lithium-ion batteries.}, number={13}, journal={NANOSCALE}, publisher={Royal Society of Chemistry (RSC)}, author={Fu, Kun and Lu, Yao and Dirican, Mahmut and Chen, Chen and Yanilmaz, Meltem and Shi, Quan and Bradford, Philip D. and Zhang, Xiangwu}, year={2014}, pages={7489–7495} } @article{li_chen_fu_xue_zhao_zhang_hu_zhou_zhang_2014, title={Comparison of Si/C, Ge/C and Sn/C composite nanofiber anodes used in advanced lithium-ion batteries}, volume={254}, ISSN={["1872-7689"]}, url={https://publons.com/publon/26924681/}, DOI={10.1016/j.ssi.2013.10.063}, abstractNote={Alloy anodes (Si, Ge and Sn) electrospun into carbon nanofibers as binder-free electrodes were synthesized and studied for rechargeable lithium-ion batteries. Alloy anode materials suffer from serious volume changes and nanoparticle aggregations during lithium insertion and extraction, resulting in rapid pulverization and capacity loss. Carbon nanofibers could help preserve the alloy anode materials during repeated cycling, and consequently maintain the cycling stability. In this work, it was found that with the increase in the amount of Si, Ge and Sn, the cycling stability was decreased due to the formation of large clusters within the carbon nanofiber matrix. Compared with Si/carbon nanofibers, Ge/carbon and Sn/carbon exhibited better cycling performance due to their improved nanoparticle distribution and smaller volume changes. The failure mechanism of the Si/carbon structure was explained in this article. It is believed that this study on Si/carbon, Ge/carbon and Sn/carbon composite nanofiber electrodes could help in designing alloy-based carbon composites with various structures for advanced lithium-ion batteries.}, journal={SOLID STATE IONICS}, publisher={Elsevier BV}, author={Li, Shuli and Chen, Chen and Fu, Kun and Xue, Leigang and Zhao, Chengxin and Zhang, Shu and Hu, Yi and Zhou, Lan and Zhang, Xiangwu}, year={2014}, month={Jan}, pages={17–26} } @article{ge_jiang_fu_zhang_zhu_chen_lu_qiu_zhang_2014, title={Copper-doped Li4Ti5O12/carbon nanofiber composites as anode for high-performance sodium-ion batteries}, volume={272}, ISSN={["1873-2755"]}, url={https://doi.org/10.1016/j.jpowsour.2014.08.131}, DOI={10.1016/j.jpowsour.2014.08.131}, abstractNote={Lithium titanium oxide (Li4Ti5O12) is a promising anode material, owing to its superior safety and reliability. However, the main challenge of Li4Ti5O12 is the low material conductivity which restricts its electrochemical performance. In order to use Li4Ti5O12 in practical sodium-ion batteries, copper-doped Li4Ti5O12 (Li4−xCuxTi5O12, x = 0, 0.05, 0.1) nanoparticles were prepared to enhance the electronic conductivity. Copper-doped Li4Ti5O12 nanoparticles were then embedded in continuous carbon nanofibers (CNFs), which gave rise to fast electron transfer along the fiber direction. After copper-doping and CNF embedding, the resultant copper-doped Li4Ti5O12/CNFs achieved excellent reversible capacity (158.1 mAh g−1) at 30 mA g−1, high coulombic efficiency (99.87%), and good capacity retention (91%) after 150 cycles. In addition, copper-doped Li4Ti5O12/CNFs also exhibited good rate capability. It is, therefore, demonstrated that copper-doped Li4Ti5O12/CNFs are promising anode candidate.}, journal={JOURNAL OF POWER SOURCES}, publisher={Elsevier BV}, author={Ge, Yeqian and Jiang, Han and Fu, Kun and Zhang, Changhuan and Zhu, Jiadeng and Chen, Chen and Lu, Yao and Qiu, Yiping and Zhang, Xiangwu}, year={2014}, month={Dec}, pages={860–865} } @article{li_chen_fu_white_zhao_bradford_zhang_2014, title={Nanosized Ge@CNF, Ge@C@CNF and Ge@CNF@C composites via chemical vapour deposition method for use in advanced lithium-ion batteries}, volume={253}, ISSN={["1873-2755"]}, url={https://publons.com/publon/11652066/}, DOI={10.1016/j.jpowsour.2013.12.017}, abstractNote={Three distinct Ge nanoparticle-filled carbon nanofiber (CNF) composites, [email protected], [email protected]@CNF and [email protected]@C, were fabricated by chemical vapor deposition (CVD) and electrospinning techniques. These different structures were prepared by: 1) dispersing Ge nanoparticles into CNF, 2) adding carbon-coated Ge nanoparticles ([email protected]) prepared by CVD into CNF, and 3) depositing CVD carbon onto [email protected], respectively. Compared with the [email protected] composite, both [email protected]@CNF and [email protected]@C had additional amorphous carbon coating fabricated by the CVD method. The three composites were studied as binder-free electrodes for rechargeable lithium-ion batteries. Raw Ge anode materials suffered from serious volume changes and nanoparticle aggregations during cycling, resulting in pulverization and capacity loss. However, carbon nanofiber and the supplemental CVD carbon layer in these nanofiber composites could help preserve the structural integrity of the alloy anode materials during repeated cycling, and consequently, lead to improved cycling stability. In this work, it was found that among the three composites, [email protected]@C exhibited the highest capacity retention of 89% at the 50th cycle due to the structurally-durable thorn-like Ge morphology and the additional CVD carbon confinement. [email protected] and [email protected]@CNF encountered rapid capacity loss because large Ge clusters were formed and jeopardized the integrity of the electrode structure during cycling.}, journal={JOURNAL OF POWER SOURCES}, publisher={Elsevier BV}, author={Li, Shuli and Chen, Chen and Fu, Kun and White, Ryan and Zhao, Chengxin and Bradford, Philip D. and Zhang, Xiangwu}, year={2014}, month={May}, pages={366–372} } @article{li_hu_lu_zhang_xu_fu_li_chen_zhou_xia_et al._2014, title={One-dimensional SiOC/C composite nanofibers as binder-free anodes for lithium-ion batteries}, volume={254}, ISSN={["1873-2755"]}, url={https://publons.com/publon/11754003/}, DOI={10.1016/j.jpowsour.2013.12.044}, abstractNote={One-dimensional silicon oxycarbide (SiOC)/C composite nanofibers were fabricated by electrospinning and subsequent heat treatment. Introducing carbon matrix to SiOC anode material is an efficient way to accommodate the large volume changes during cycling and also increase the amount of free carbon, which is beneficial for improving the reversible capacity. These SiOC/C composite nanofibers form free-standing conductive membranes that can be used directly as battery electrodes without adding carbon black or polymer binder. Results show that after 80 cycles, the discharge capacity of SiOC/C composite nanofiber anodes is 70% higher than that of Si/C nanofiber anodes and more than 1.5 times larger than those of commercial anodes made from graphite. It is, therefore, demonstrated that one-dimensional SiOC/C nanofibers are promising anode material with large capacities and good cycling stability.}, journal={JOURNAL OF POWER SOURCES}, publisher={Elsevier BV}, author={Li, Ying and Hu, Yi and Lu, Yao and Zhang, Shu and Xu, Guanjie and Fu, Kun and Li, Shuli and Chen, Chen and Zhou, Lan and Xia, Xin and et al.}, year={2014}, month={May}, pages={33–38} } @article{fu_li_dirican_chen_lu_zhu_li_cao_bradford_zhang_et al._2014, title={Sulfur gradient-distributed CNF composite: a self-inhibiting cathode for binder-free lithium-sulfur batteries}, volume={50}, ISSN={["1364-548X"]}, url={https://publons.com/publon/26924687/}, DOI={10.1039/c4cc04970e}, abstractNote={A self-inhibiting, gradient sulfur structure was designed and developed by the synthesis of a carbon nanofiber-sulphur composite via sulfur vapor deposition method for use as a binder-free sulfur cathode, exhibiting high sulfur loading (2.6 mg cm(-2)) and high sulfur content (65%) with a stable capacity of >700 mA h g(-1).}, number={71}, journal={CHEMICAL COMMUNICATIONS}, publisher={Royal Society of Chemistry (RSC)}, author={Fu, Kun and Li, Yanpeng and Dirican, Mahmut and Chen, Chen and Lu, Yao and Zhu, Jiadeng and Li, Yao and Cao, Linyou and Bradford, Philip D. and Zhang, Xiangwu and et al.}, year={2014}, pages={10277–10280} } @article{yanilmaz_chen_zhang_2013, title={Fabrication and Characterization of SiO2/PVDF Composite Nanofiber-Coated PP Nonwoven Separators for Lithium-Ion Batteries}, volume={51}, ISSN={["1099-0488"]}, url={https://publons.com/publon/7178359/}, DOI={10.1002/polb.23387}, abstractNote={SiO2/polyvinylidene fluoride (PVDF) composite nanofiber-coated polypropylene (PP) nonwoven membranes were prepared by electrospinning of SiO2/PVDF dispersions onto both sides of PP nonwovens. The goal of this study was to combine the good mechanical strength of PP nonwoven with the excellent electrochemical properties of SiO2/PVDF composite nanofibers to obtain a new high-performance separator. It was found that the addition of SiO2 nanoparticles played an important role in improving the overall performance of these nanofiber-coated nonwoven membranes. Among the membranes with various SiO2 contents, 15% SiO2/PVDF composite nanofiber-coated PP nonwoven membranes provided the highest ionic conductivity of 2.6 × 10−3 S cm−1 after being immersed in a liquid electrolyte, 1 mol L−1 lithium hexafluorophosphate in ethylene carbonate, dimethyl carbonate and diethyl carbonate. Compared with pure PVDF nanofiber-coated PP nonwoven membranes, SiO2/PVDF composite fiber-coated PP nonwoven membranes had greater liquid electrolyte uptake, higher electrochemical oxidation limit, and lower interfacial resistance with lithium. SiO2/PVDF composite fiber-coated PP nonwoven membrane separators were assembled into lithium/lithium iron phosphate cells and demonstrated high cell capacities and good cycling performance at room temperature. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 1719–1726}, number={23}, journal={JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS}, author={Yanilmaz, Meltem and Chen, Chen and Zhang, Xiangwu}, year={2013}, month={Dec}, pages={1719–1726} }