@article{baltzegar_vella_gunning_vasquez_astete_stell_fisher_scott_lenhart_lloyd_et al._2021, title={Rapid evolution of knockdown resistance haplotypes in response to pyrethroid selection in Aedes aegypti}, volume={7}, ISSN={["1752-4571"]}, DOI={10.1111/eva.13269}, abstractNote={AbstractThis study describes the evolution of knockdown resistance (kdr) haplotypes in Aedes aegypti in response to pyrethroid insecticide use over the course of 18 years in Iquitos, Peru. Based on the duration and intensiveness of sampling (~10,000 samples), this is the most thorough study of kdr population genetics in Ae. aegypti to date within a city. We provide evidence for the direct connection between programmatic citywide pyrethroid spraying and the increase in frequency of specific kdr haplotypes by identifying two evolutionary events in the population. The relatively high selection coefficients, even under infrequent insecticide pressure, emphasize how quickly Ae. aegypti populations can evolve. In our examination of the literature on mosquitoes and other insect pests, we could find no cases where a pest evolved so quickly to so few exposures to low or nonresidual insecticide applications. The observed rapid increase in frequency of resistance alleles might have been aided by the incomplete dominance of resistance‐conferring alleles over corresponding susceptibility alleles. In addition to dramatic temporal shifts, spatial suppression experiments reveal that genetic heterogeneity existed not only at the citywide scale, but also on a very fine scale within the city.}, journal={EVOLUTIONARY APPLICATIONS}, author={Baltzegar, Jennifer and Vella, Michael and Gunning, Christian and Vasquez, Gissella and Astete, Helvio and Stell, Fred and Fisher, Michael and Scott, Thomas W. and Lenhart, Audrey and Lloyd, Alun L. and et al.}, year={2021}, month={Jul} } @article{vella_gunning_lloyd_gould_2017, title={Evaluating strategies for reversing CRISPR-Cas9 gene drives}, volume={7}, ISSN={2045-2322}, url={http://dx.doi.org/10.1038/s41598-017-10633-2}, DOI={10.1038/s41598-017-10633-2}, abstractNote={AbstractA gene drive biases inheritance of a gene so that it increases in frequency within a population even when the gene confers no fitness benefit. There has been renewed interest in environmental releases of engineered gene drives due to recent proof of principle experiments with the CRISPR-Cas9 system as a drive mechanism. Release of modified organisms, however, is controversial, especially when the drive mechanism could theoretically alter all individuals of a species. Thus, it is desirable to have countermeasures to reverse a drive if a problem arises. Several genetic mechanisms for limiting or eliminating gene drives have been proposed and/or developed, including synthetic resistance, reversal drives, and immunizing reversal drives. While predictions about efficacy of these mechanisms have been optimistic, we lack detailed analyses of their expected dynamics. We develop a discrete time model for population genetics of a drive and proposed genetic countermeasures. Efficacy of drive reversal varies between countermeasures. For some parameter values, the model predicts unexpected behavior including polymorphic equilibria and oscillatory dynamics. The timing and number of released individuals containing a genetic countermeasure can substantially impact outcomes. The choice among countermeasures by researchers and regulators will depend on specific goals and population parameters of target populations.}, number={1}, journal={Scientific Reports}, publisher={Springer Nature}, author={Vella, Michael R. and Gunning, Christian E. and Lloyd, Alun L. and Gould, Fred}, year={2017}, month={Sep} } @article{andris_lee_hamilton_martino_gunning_selden_2015, title={The rise of partisanship and super-cooperators in the US house of representatives}, volume={10}, number={4}, journal={PLoS One}, author={Andris, C. and Lee, D. and Hamilton, M. J. and Martino, M. and Gunning, C. E. and Selden, J. A.}, year={2015} }