@article{trandel_johanningsmeier_schultheis_gunter_perkins-veazie_2021, title={Cell Wall Polysaccharide Composition of Grafted 'Liberty' Watermelon With Reduced Incidence of Hollow Heart Defect}, volume={12}, ISSN={["1664-462X"]}, DOI={10.3389/fpls.2021.623723}, abstractNote={Grafting watermelon scions to interspecific squash hybrids has been found to increase fruit firmness. Triploid (seedless) watermelon are prone to hollow heart (HH), an internal fruit disorder characterized by a crack in the placental tissue expanding to a cavity. Although watermelon with lower tissue firmness tend to have a higher HH incidence, associated differences in cell wall polysaccharide composition are unknown. Grafting “Liberty” watermelon to “Carnivor” (interspecific hybrid rootstock, C. moschata × C. maxima) reduced HH 39% and increased tissue firmness by 3 N. Fruit with and without severe HH from both grafted and non-grafted plants were analyzed to determine differences in cell wall polysaccharides associated with grafting and HH. Alcohol insoluble residues (AIR) were sequentially extracted from placental tissue to yield water soluble (WSF), carbonate soluble (CSF), alkali soluble (ASF), or unextractable (UNX) pectic fractions. The CSF was lower in fruit with HH (24.5%) compared to those without HH (27.1%). AIRs were also reduced, hydrolyzed, and acetylated for GC-MS analysis of monosaccharide composition, and a portion of each AIR was methylated prior to hydrolysis and acetylation to produce partially methylated alditol acetates for polysaccharide linkage assembly. No differences in degree of methylation or galacturonic and glucuronic acid concentrations were found. Glucose and galactose were in highest abundance at 75.9 and 82.4 μg⋅mg–1 AIR, respectively, followed by xylose and arabinose (29.3 and 22.0 μg⋅mg–1). Mannose was higher in fruit with HH (p < 0.05) and xylose was highest in fruit from grafted plants (p < 0.05). Mannose is primarily found in heteromannan and rhamnogalacturonan I side chains, while xylose is found in xylogalacturonan or heteroxylan. In watermelon, 34 carbohydrate linkages were identified with galactose, glucose, and arabinose linkages in highest abundance. This represents the most comprehensive polysaccharide linkage analysis to date for watermelon, including the identification of several new linkages. However, total pectin and cell wall composition data could not explain the increased tissue firmness observed in fruit from grafted plants. Nonetheless, grafting onto the interspecific hybrid rootstock decreased the incidence of HH and can be a useful method for growers using HH susceptible cultivars.}, journal={FRONTIERS IN PLANT SCIENCE}, author={Trandel, Marlee A. and Johanningsmeier, Suzanne and Schultheis, Jonathan and Gunter, Chris and Perkins-Veazie, Penelope}, year={2021}, month={Mar} } @article{trandel_perkins-veazie_schultheis_gunter_johannes_2021, title={Grafting watermelon onto interspecific hybrid squash reduces hollow heart disorder}, volume={1302}, ISSN={["2406-6168"]}, DOI={10.17660/ActaHortic.2021.1302.30}, journal={II INTERNATIONAL SYMPOSIUM ON VEGETABLE GRAFTING}, author={Trandel, M. A. and Perkins-Veazie, P. and Schultheis, J. R. and Gunter, C. C. and Johannes, E.}, year={2021}, pages={225–232} } @article{suchoff_jackson_gunter_schultheis_louws_2021, title={Non-destructive characterization of grafted tomato root systems using the mini-horhizotron}, volume={1302}, ISSN={["2406-6168"]}, url={https://publons.com/wos-op/publon/56007334/}, DOI={10.17660/ActaHortic.2021.1302.28}, journal={II INTERNATIONAL SYMPOSIUM ON VEGETABLE GRAFTING}, author={Suchoff, D. H. and Jackson, B. E. and Gunter, C. C. and Schultheis, J. R. and Louws, F. J.}, year={2021}, pages={209–214} } @article{perkins-veazie_gunter_trandel_2020, title={Postharvest handling of organically produced specialty crops}, volume={66}, ISBN={["978-1-78676-288-7"]}, ISSN={["2059-6944"]}, DOI={10.19103/AS.2019.0055.16}, journal={ADVANCES IN POSTHARVEST MANAGEMENT OF HORTICULTURAL PRODUCE}, author={Perkins-Veazie, Penelope and Gunter, Chris and Trandel, Marlee}, year={2020}, pages={391–408} } @article{suchoff_schultheis_gunter_hassell_louws_2019, title={Effect of rootstock and nitrogen fertilizer on growth and yield in watermelon}, volume={94}, ISSN={["2380-4084"]}, url={http://dx.doi.org/10.1080/14620316.2019.1624629}, DOI={10.1080/14620316.2019.1624629}, abstractNote={ABSTRACT Herbaceous grafting can be used to manage numerous soilborne pathogens in cucurbits. Rootstocks have been reported to increase the growth of the scion possibly due to more efficient use of nitrogen compared with non-grafted plants. The first objective of this study was to determine if the commercial rootstocks ‘Strongtosa’, ‘Carnivor’, or ‘Macis’ improve growth and production of the watermelon ‘Melody’ scion. The second objective was to determine whether these rootstocks have different nitrogen requirements in open-field production compared with non-grafted ‘Melody’. Field studies were conducted in 2013 and 2014 on the Sandhills Research Station in Jackson Springs, North Carolina. Nitrogen fertiliser was applied via drip irrigation at 0, 84, 126, 168, and 252 kg⋅ha−1. A linear relationship between nitrogen rate and rootstock cultivar existed; however, in all cases the non-grafted plants produced more than all grafted plants. Average fruit weight from the non-grafted plants was also higher than the grafted plants. Fruit from ‘Carnivor’- and ‘Strongtosa’-grafted plants had higher flesh firmness compared with non-grafted ‘Melody’. Our findings suggest that rootstocks do not increase yield or growth in the scion nor do they require different nitrogen application rates. However, some rootstocks do improve overall fruit quality.}, number={6}, journal={JOURNAL OF HORTICULTURAL SCIENCE & BIOTECHNOLOGY}, author={Suchoff, David H. and Schultheis, Jonathan R. and Gunter, Christopher C. and Hassell, Richard L. and Louws, Frank J.}, year={2019}, month={Nov}, pages={798–804} } @article{johnson_bloom_dunning_gunter_boyette_creamer_2019, title={Farmer harvest decisions and vegetable loss in primary production}, volume={176}, ISSN={["1873-2267"]}, DOI={10.1016/j.agsy.2019.102672}, abstractNote={The topic of food loss and waste has risen in importance since the revelation that an estimated 40% of food in America is never consumed. Losses at the field level, however, are not well understood, and economic and growing conditions that dictate decisions made by fruit and vegetable growers can determine how much food is left unharvested. Many strategies have been suggested to reduce food loss and waste, but their development has been informed by concerns at the consumer level, and may not motivate growers to reduce losses. This study sought to understand how growers make decisions regarding when to end the harvest, and explores growers' perceptions of strategies that would incentivize them to reduce losses. The authors conducted seventeen semi-structured interviews with mid-sized to large commercial vegetable growers in North Carolina. The resulting findings clarify the primary decision-making drivers affecting food loss in the field, including whether growers have an interested buyer, the quality of the produce, the available price, the financial risk of product rejection, and the priority of another field becoming mature and ready to harvest. Growers did not perceive losses to be of high enough volume or value to measure crops that were left unharvested in the field, though research indicates that the volume is actually significant. We also asked growers about their perceptions of strategies for reducing farm level losses that have been promoted in industry reports on the subject. These strategies include facilitating donation and supporting emerging markets that focus on imperfect produce. Neither of these aligned well with strategies that growers perceived as important, such as increasing demand, providing processing infrastructure, and facilitating a consistent market and prices. While some growers donate produce or participate in gleaning, these activities can be limited by continued negative perceptions. Findings from this research suggest that, in order to effectively reduce the loss of edible food at the farm level, growers must be included in the development of strategies, and those strategies must incentivize their participation in order to be effective.}, journal={AGRICULTURAL SYSTEMS}, publisher={Elsevier BV}, author={Johnson, Lisa K. and Bloom, J. Dara and Dunning, Rebecca D. and Gunter, Chris C. and Boyette, Michael D. and Creamer, Nancy G.}, year={2019}, month={Nov} } @article{suchoff_gunter_schultheis_hassell_louws_2019, title={The effect of grafting on nitrogen use in determinate field-grown tomatoes}, volume={94}, ISSN={["2380-4084"]}, url={http://dx.doi.org/10.1080/14620316.2018.1450645}, DOI={10.1080/14620316.2018.1450645}, abstractNote={ABSTRACTGrafting tomato (Solanum lycopersicum L.) onto disease resistant rootstocks has grown in use in North America over the past two decades. Rootstocks have traditionally been bred and used for...}, number={1}, journal={JOURNAL OF HORTICULTURAL SCIENCE & BIOTECHNOLOGY}, author={Suchoff, David H. and Gunter, Christopher C. and Schultheis, Jonathan R. and Hassell, Richard L. and Louws, Frank J.}, year={2019}, month={Jan}, pages={102–109} } @article{suchoff_louws_gunter_2019, title={Yield and Disease Resistance for Three Bacterial Wilt-resistant Tomato Rootstocks}, volume={29}, ISSN={["1943-7714"]}, url={http://dx.doi.org/10.21273/horttech04318-19}, DOI={10.21273/HORTTECH04318-19}, abstractNote={Interest and use of grafted tomato (Solanum lycopersicum) in the United States continues to grow. Pioneered in Asia, herbaceous grafting is a commonly used cultural practice to manage many soilborne pathogens. Bacterial wilt (BW), caused by the pathogen Ralstonia solanacearum, is an aggressive soilborne pathogen that affects tomato grown in the southeastern United States. Traditional fumigation methods have limited effectiveness in the management of this pathogen. The present study was conducted to compare the bacterial wilt resistance of three commercially available tomato rootstocks, which are purported to be resistant to bacterial wilt: ‘Cheong Gang’, ‘RST-04-106-T’, and ‘Shield’. The determinate hybrid tomato ‘Red Mountain’, which is susceptible to bacterial wilt, was used as the scion and nongrafted control. Three locations were used over 2 years in North Carolina: an on-farm site with a history of bacterial wilt and two North Carolina Department of Agriculture Research Stations with no recent history of bacterial wilt. No disease symptoms were observed in any of the three grafted treatments, whereas the nongrafted controls showed between 30% and 80% disease incidence at the on-farm location. The resultant rootstock-imparted resistance improved marketable yields by between 88% and 125% compared with the nongrafted plants. When grown in locations lacking BW there were no yield benefits to grafting with any of the three rootstocks.}, number={3}, journal={HORTTECHNOLOGY}, publisher={American Society for Horticultural Science}, author={Suchoff, David H. and Louws, Frank J. and Gunter, Christopher C.}, year={2019}, month={Jun}, pages={330–337} } @article{bertucci_suchoff_jennings_monks_gunter_schultheis_louws_2018, title={Comparison of Root System Morphology of Cucurbit Rootstocks for Use in Watermelon Grafting}, volume={28}, ISSN={["1943-7714"]}, url={https://publons.com/wos-op/publon/39930266/}, DOI={10.21273/HORTTECH04098-18}, abstractNote={Grafting of watermelon (Citrullus lanatus) is an established production practice that provides resistance to soilborne diseases or tolerance to abiotic stresses. Watermelon may be grafted on several cucurbit species (interspecific grafting); however, little research exists to describe root systems of these diverse rootstocks. A greenhouse study was conducted to compare root system morphology of nine commercially available cucurbit rootstocks, representing four species: pumpkin (Cucurbita maxima), squash (Cucurbita pepo), bottle gourd (Lagenaria siceraria), and an interspecific hybrid squash (C. maxima × C. moschata). Rootstocks were grafted with a triploid watermelon scion (‘Exclamation’), and root systems were compared with nongrafted (NG) and self-grafted (SG) ‘Exclamation’. Plants were harvested destructively at 1, 2, and 3 weeks after transplant (WAT), and data were collected on scion dry weight, total root length (TRL), average root diameter, root surface area, root:shoot dry-weight ratio, root diameter class proportions, and specific root length. For all response variables, the main effect of rootstock and rootstock species was significant (P < 0.05). The main effect of harvest was significant (P < 0.05) for all response variables, with the exception of TRL proportion in diameter class 2. ‘Ferro’ rootstock produced the largest TRL and root surface area, with observed values 122% and 120% greater than the smallest root system (‘Exclamation’ SG), respectively. Among rootstock species, pumpkin produced the largest TRL and root surface area, with observed values 100% and 82% greater than those of watermelon, respectively. These results demonstrate that substantial differences exist during the initial 3 WAT in root system morphology of rootstocks and rootstock species available for watermelon grafting and that morphologic differences of root systems can be characterized using image analysis.}, number={5}, journal={HORTTECHNOLOGY}, publisher={American Society for Horticultural Science}, author={Bertucci, Matthew B. and Suchoff, David H. and Jennings, Katherine M. and Monks, David W. and Gunter, Christopher C. and Schultheis, Jonathan R. and Louws, Frank J.}, year={2018}, month={Oct}, pages={629–636} } @article{johnson_dunning_bloom_gunter_boyette_creamer_2018, title={Estimating on-farm food loss at the field level: A methodology and applied case study on a North Carolina farm}, volume={137}, ISSN={["1879-0658"]}, DOI={10.1016/j.resconrec.2018.05.017}, abstractNote={Current estimates of food loss at the farm level are either carried forward from decades-old estimates that rely on data from small farms using alternative agricultural practices, or they are based on grower estimates reported during interviews. A straightforward protocol adaptable to many crops is necessary to provide comparable data that can begin to fill gaps in knowledge on food loss in the US. Accurate estimation of on-farm losses for fruits and vegetables can inform ongoing national food loss and waste discussions and farm-level business decisions that hold potentially positive impacts for farm viability and resource-use efficiency. This paper describes a straightforward methodology for field-level measurement and demonstrates its utility on six vegetable crops harvested in 13 fields of a 121-hectare North Carolina vegetable farm. In this case, results showed that on average, approximately 65% of the unharvested crop that remained in the field was of wholesome, edible quality, although the appearance may not meet buyers’ specifications for certain markets. The overall estimated average of vegetable crops that remained unharvested, yet were wholesome and available for recovery, was 8840 kg per hectare on the case study farm. The portion of the grower’s reported total marketed yield that remained unutilized in the field averaged 57%, a figure greatly exceeding current estimates of farm level loss. Developing strategies to utilize these losses could enable growers to increase the amount of fresh produce moving into the supply chain, and represent a path towards sustainable intensification of vegetable crop production.}, journal={RESOURCES CONSERVATION AND RECYCLING}, publisher={Elsevier BV}, author={Johnson, Lisa K. and Dunning, Rebecca D. and Bloom, J. Dara and Gunter, Chris C. and Boyette, Michael D. and Creamer, Nancy G.}, year={2018}, month={Oct}, pages={243–250} } @article{rutz_bloom_schroeder-moreno_gunter_2018, title={Farm to childcare: An analysis of social and economic values in local food systems}, volume={8}, ISSN={["2152-0801"]}, DOI={10.5304/jafscd.2018.083.004}, abstractNote={Farm to institution is a component of the local food movement, representing the growing link between local producers and organizations like schools, prisons, and hospitals. These are organizations that have concentrated buying power and thus a sizable influence on local food supply chains. Farm to childcare represents a next step in farm to institution, serving young children at the apex of their habit formation and biological development, and providing economic opportunities for local farmers. Using a qualitative case study methodology in one urban county in North Carolina, this paper asks the questions: (1) How do childcare centers, farmers, and distributors negotiate the tensions between social and financial values in the farm-to-childcare initiative? and (2) What strategies do these supply chain actors use to overcome barriers? Analyzing the perceptions of participation in a farm-to-childcare project of 11 childcare centers, 11 farmers, and four distributors shows parallel values for children’s health and community cona * Corresponding author: Jacob C. Rutz, Farm to Childcare Farmer Liaison, Department of Agricultural and Human Sciences, North Carolina State University; 512 Brickhaven Road, Box 7606; Raleigh, NC 27695 USA; +1-513-939-6444;}, number={3}, journal={JOURNAL OF AGRICULTURE FOOD SYSTEMS AND COMMUNITY DEVELOPMENT}, author={Rutz, Jacob C. and Bloom, J. Dara and Schroeder-Moreno, Michelle and Gunter, Chris}, year={2018}, pages={23–39} } @article{johnson_dunning_gunter_bloom_boyette_creamer_2018, title={Field measurement in vegetable crops indicates need for reevaluation of on-farm food loss estimates in North America}, volume={167}, ISSN={["1873-2267"]}, DOI={10.1016/j.agsy.2018.09.008}, abstractNote={Food loss and waste in the US has been estimated at 40%, a figure that does not include losses at the agricultural level. Consumer food waste is expensive and environmentally damaging as it travels the length of the supply chain and largely ends up in the landfill. Most research and campaigns emphasize the consumer level, which has resulted in the omission of data collection and development of solutions for producers of fruit and vegetable crops. The available estimates of edible produce lost in the field are based on assumptions and estimates, rather than field data. Therefore, this project aimed to measure losses in the field in order to understand if estimates are accurate. Sixty-eight fields of eight vegetable crops were evaluated on nine North Carolina farms during the 2017 production season, using a sampling and scaling method. Combining the unharvested crops of marketable quality and edible but not marketable quality (produce that does not meet appearance quality standards), the average produce volume available after the primary harvest was 5114.59 kg per hectare. Totaling an average of 42% of the marketed yield for these crops, these high figures indicate the need for a reevaluation of the food loss estimates at the agricultural level in the US, and a focus on solutions.}, journal={AGRICULTURAL SYSTEMS}, publisher={Elsevier BV}, author={Johnson, Lisa K. and Dunning, Rebecca D. and Gunter, Chris C. and Bloom, J. Dara and Boyette, Michael D. and Creamer, Nancy G.}, year={2018}, month={Nov}, pages={136–142} } @article{suchoff_perkins-veazie_sederoff_schultheis_kleinhenz_louws_gunter_2018, title={Grafting the Indeterminate Tomato Cultivar Moneymaker onto Multifort Rootstock Improves Cold Tolerance}, volume={53}, ISSN={["2327-9834"]}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-85057832928&partnerID=MN8TOARS}, DOI={10.21273/HORTSCI13311-18}, abstractNote={Tomato (Solanum lycopersicum L.) is a warm-season, cold-sensitive crop that shows slower growth and development at temperatures below 18 °C. Improving suboptimal temperature tolerance would allow earlier planting of field-grown tomato and a reduction in energy inputs for heating greenhouses. Grafting tomato onto high-altitude Solanum habrochaites (S. Knapp and D.M. Spooner) accessions has proven effective at improving scion suboptimal temperature tolerance in limited experiments. This study was conducted to determine whether commercially available tomato rootstocks with differing parental backgrounds and root system morphologies can improve the tolerance of scion plants to suboptimal temperature. Two controlled environment growth chambers were used and maintained at either optimal (25 °C day/20 °C night) or suboptimal (15 °C day/15 °C night) temperatures. The cold-sensitive tomato cultivar Moneymaker was used as the nongrafted and self-grafted control as well as scion grafted on ‘Multifort’ (S. lycopersicum × S. habrochaites), ‘Shield’ (S. lycopersicum), and S. habrochaites LA1777 rootstocks. Plants were grown for 10 days in 3.8 L plastic containers filled with a mixture of calcined clay and sand. ‘Multifort’ rootstock significantly reduced the amount of cold-induced stress as observed by larger leaf area and higher levels of CO2 assimilation and photosystem II quantum efficiency. ‘Multifort’ had significantly longer roots, having 42% to 56% more fine root (diameter less than 0.5 mm) length compared with the other nongrafted and grafted treatments. Leaf starch concentration was significantly lower in ‘Multifort’-grafted plants at suboptimal temperatures compared with the self-grafted and nongrafted controls and the ‘Shield’-grafted plants at the same temperature. The ability for ‘Multifort’ to maintain root growth at suboptimal temperatures may improve root system sink strength, thereby promoting movement of photosynthate from leaf to root even under cold conditions. This work demonstrates that a commercially available rootstock can be used to improve suboptimal temperature tolerance in cold-sensitive ‘Moneymaker’ scions.}, number={11}, journal={HORTSCIENCE}, author={Suchoff, David H. and Perkins-Veazie, Penelope and Sederoff, Heike W. and Schultheis, Jonathan R. and Kleinhenz, Matthew D. and Louws, Frank J. and Gunter, Christopher C.}, year={2018}, month={Nov}, pages={1610–1617} } @article{louws_suchoff_kressin_panthee_driver_gunter_2018, title={Integrating grafting and emerging products to manage soilborne diseases of tomato}, volume={1207}, ISSN={0567-7572 2406-6168}, url={http://dx.doi.org/10.17660/actahortic.2018.1207.34}, DOI={10.17660/ActaHortic.2018.1207.34}, abstractNote={Major soilborne diseases in North Carolina and surrounding states include fusarium wilt (FW) (causal agent Fusarium oxysporum f. sp. lycopersici; all three races), verticillium wilt (VW) (Verticillium dahliae; two races), southern stem blight (SSB) (Sclerotium rolfsii), root-knot nematodes (RKN) (primarily Meloidogyne incognita) and bacterial wilt (BW) (Ralstonia solanacearum race 1), distributed across the subtropical to temperate ecosystems in the state. FW, VW, SSB, and RKN can be well managed using standard fumigants. Alternative management practices are needed in production systems where fumigants are not used or effective, and/or where heirloom tomato cultivars are grown. We are involved in a USA multi-state program to determine the viability of grafting in open-field production systems. Previously published work showed the utility of grafting to manage FW, SSB, RKN, and BW. In complementary work to manage BW, a replicated on-farm field trial demonstrates that fumigants such as Paladin (79% dimethyl disulfide + 21% chloropicrin) and PicClor60 (60% chloropicrin + 40% 1,3-dichloropropene) allow up to 80% plant death, similar to incidence in non-fumigated plots, whereas grafting to resistant rootstock (Seminis 'Cheong Gang') confers 100% control in non-fumigated plots. Another on-farm randomized complete block design experiment demonstrated that three commercially available rootstocks conferred 100% plant stand, whereas non-grafted plants had 80% plant death using a round tomato scion ('Red Mountain') or 15% plant death using a roma tomato ('Picus'). Grafted plants show economic viability in North Carolina, and additional work is needed to optimize this tool in diverse production systems.}, number={1207}, journal={Acta Horticulturae}, publisher={International Society for Horticultural Science (ISHS)}, author={Louws, F.J. and Suchoff, D. and Kressin, J. and Panthee, D. and Driver, J. and Gunter, C.}, year={2018}, month={Jul}, pages={249–254} } @article{suchoff_gunter_schultheis_kleinhenz_louws_2018, title={Rootstock Effect on Grafted Tomato Transplant Shoot and Root Responses to Drying Soils}, volume={53}, ISSN={["2327-9834"]}, url={https://publons.com/wos-op/publon/45897406/}, DOI={10.21273/HORTSCI13215-18}, abstractNote={Improvement of crop water use is imperative. Plants’ responses to limited water can dictate their ability to better use available resources and avoid prolonged and severe stress. The following study was conducted to determine how tomato (Solanum lycopersicum) rootstocks with different root system morphologies respond to drying soils. Plants were grown in pots containing an inorganic substrate composed of calcined clay and sand in a greenhouse on North Carolina State University’s campus. The heirloom tomato cultivar Cherokee Purple was used as the scion for ‘Beaufort’ and ‘Shield’ rootstocks as well as the self-grafted control. These rootstocks were assigned either normal or reduced irrigation treatments. Plants grown under the normal irrigation schedule were weighed and watered daily to maintain container capacity for one week. Those receiving reduced irrigation had all water withheld for one week, at which point strong midday wilting became evident. Shoot physiological and morphological data as well as root morphological data were collected at the end of the study. A constitutive positive increase on relative water content, leaf area, stomatal conductance (gS), and net CO2 assimilation rate was observed with scions grafted on ‘Beaufort’. In addition, this rootstock had a significantly longer total root system (118.6 m) compared with ‘Shield’ (94.9 m) and the self-grafted control (104.2 m). Furthermore, 76.4% of the total root length observed in ‘Beaufort’ was composed of very thin diameter roots ( <0.5 mm), which was higher than ‘Shield’ (73.67%) and the self-grafted control (69.07%). The only significant rootstock irrigation interaction observed was for effective quantum yield of photosystem II (φPSII). At normal irrigation there were no differences among the rootstock treatments; however, at reduced irrigation ‘Beaufort’ had significantly higher φPSII than both ‘Shield’ and the self-grafted control. These results may explain some of the improved production and water use efficiency observed in field trials using ‘Beaufort’ rootstock, and data secured may allow for better screening of rootstocks for improved water use efficiency in the future.}, number={11}, journal={HORTSCIENCE}, publisher={American Society for Horticultural Science}, author={Suchoff, David H. and Gunter, Christopher C. and Schultheis, Jonathan R. and Kleinhenz, Matthew D. and Louws, Frank J.}, year={2018}, month={Nov}, pages={1586–1592} } @article{suchoff_schultheis_kleinhenz_louws_gunter_2018, title={Rootstock Improves High-tunnel Tomato Water Use Efficiency}, volume={28}, ISSN={["1943-7714"]}, DOI={10.21273/horttech04015-18}, abstractNote={The following study was conducted to address water use efficiency in grafted tomato (Solanum lycopersicum) in an on-farm environment. The commercial rootstock cultivars Beaufort (BE) and Shield (S) were chosen as these two have different root system morphologies that may benefit water use efficiency. The heirloom cultivar Cherokee Purple (CP) was grafted onto both rootstocks and used as the nongrafted control. The study was conducted in 2016 and 2017 on a 5-acre vegetable and cut flower farm in North Carolina’s Piedmont region. Plants were grown under protected, high-tunnel culture where they received either 100% (3 hours every other day) or 50% (1.5 hours every other day) of the grower’s normal irrigation regime. At 50% irrigation, ‘Beaufort’-grafted plants yielded significantly more than nongrafted ‘Cherokee Purple’ and ‘Shield’-grafted plants. Furthermore, ‘Beaufort’-grafted plants at 50% irrigation yielded more than nongrafted ‘Cherokee Purple’ receiving the 100% irrigation treatment. The ‘Beaufort’-grafted plants significantly improved irrigation water use efficiency (iWUE) at the 50% irrigation treatment compared with the other graft treatments. Yield and iWUE of ‘Shield’-grafted plants were comparable with the nongrafted ‘Cherokee Purple’ at both irrigation treatments. Regardless of irrigation treatment, grafting onto ‘Beaufort’ improved the quality of total fruit harvested. An economic assessment was conducted to determine the feasibility of using grafted plants in conditions lacking significant disease pressure. Purchasing grafted transplants would increase the initial investment by $5227.2 per acre. However, the increased yield obtained when using ‘Beaufort’ rootstock at 50% irrigation increased net revenue by $35,900.41 per acre compared with nongrafted ‘Cherokee Purple’ receiving 100% irrigation, amounting to a 44.6% increase in net revenue while saving ≈383,242 gal/acre of water per growing season. These results indicate that growers can select rootstocks to better manage water use in an environmentally friendly manner without limiting economic gains.}, number={3}, journal={HORTTECHNOLOGY}, publisher={American Society for Horticultural Science}, author={Suchoff, David H. and Schultheis, Jonathan R. and Kleinhenz, Matthew D. and Louws, Frank J. and Gunter, Christopher C.}, year={2018}, month={Jun}, pages={344–353} } @article{chaudhari_jennings_monks_jordan_gunter_louws_2017, title={Absorption, Translocation, and Metabolism of14C-Halosulfuron in Grafted Eggplant and Tomato}, volume={31}, ISSN={0890-037X 1550-2740}, url={http://dx.doi.org/10.1017/WET.2017.65}, DOI={10.1017/WET.2017.65}, abstractNote={Grafted plants are a combination of two different interspecific or intraspecific scion and rootstock. Determination of herbicidal selectivity of the grafted plant is critical given their increased use in vegetable production. Differential absorption, translocation, and metabolism play an important role in herbicide selectivity of plant species because these processes affect the herbicide amount delivered to the site of action. Therefore, experiments were conducted to determine absorption, translocation, and metabolism of halosulfuron in grafted and non-grafted tomato and eggplant. Transplant type included non-grafted tomato cultivar Amelia, non-grafted eggplant cultivar Santana, Amelia scion grafted onto Maxifort tomato rootstock (A-Maxifort) and Santana scion grafted onto Maxifort rootstock (S-Maxifort). Plants were treated POST with commercially formulated halosulfuron at 39 g ai ha-1followed by14C-halosulfuron under controlled laboratory conditions. Amount of14C-halosufuron was quantified in leaf wash, treated leaf, scion shoot, rootstock shoot, and root at 6, 12, 24, 48, and 96 h after treatment (HAT) using liquid scintillation spectrometry. No differences were observed between transplant types with regard to absorption and translocation of14C-halosulfuron. Absorption of14C-halosulfuron increased with time, reaching 10 and 74% of applied at 6 and 96 HAT, respectively. Translocation of14C-halosulfuron was limited to the treated leaf, which reached maximum (66% of applied) at 96 HAT, whereas minimal (<4% of applied) translocation occurred in scion shoot, rootstock shoot, and root. Tomato plants metabolized halosulfuron faster compared to eggplant regardless of grafting. Of the total amount of14C-halosulfuron absorbed into the plant, 9 to 14% remained in the form of the parent compound in tomato compared with 25 to 26% in eggplant at 48 HAT. These results indicate that grafting did not affect absorption, translocation, and metabolism of POST halosulfuron in tomato and eggplant.}, number={6}, journal={Weed Technology}, publisher={Cambridge University Press (CUP)}, author={Chaudhari, Sushila and Jennings, Katherine M. and Monks, David W. and Jordan, David L. and Gunter, Christopher C. and Louws, Frank J.}, year={2017}, month={Sep}, pages={908–914} } @article{suchoff_gunter_louws_2017, title={Comparative Analysis of Root System Morphology in Tomato Rootstocks}, volume={27}, ISSN={["1943-7714"]}, DOI={10.21273/horttech03654-17}, abstractNote={At its most basic, grafting is the replacement of one root system with another containing more desirable traits. Grafting of tomato (Solanum lycopersicum) onto disease-resistant rootstocks is an increasingly popular alternative for managing economically damaging soilborne diseases. Although certain rootstocks have demonstrated ancillary benefits in the form of improved tolerance to edaphic abiotic stress, the mechanisms behind the enhanced stress tolerance are not well understood. Specific traits within root system morphology (RSM), in both field crops and vegetables, can improve growth in conditions under abiotic stress. A greenhouse study was conducted to compare the RSM of 17 commercially available tomato rootstocks and one commercial field cultivar (Florida-47). Plants were grown in containers filled with a mixture of clay-based soil conditioner and pool filter sand (2:1 v/v) and harvested at 2, 3, or 4 weeks after emergence. At harvest, roots were cleaned, scanned, and analyzed with an image analysis system. Data collected included total root length (TRL), average root diameter, specific root length (SRL), and relative diameter class. The main effect of cultivar was significant (P ≤ 0.05) for all response variables and the main effect of harvest date was only significant (P ≤ 0.01) for TRL. ‘RST-106’ rootstock had the longest TRL, whereas ‘Beaufort’ had the shortest. ‘BHN-1088’ had the thickest average root diameter, which was 32% thicker than the thinnest, observed in ‘Beaufort’. SRL in ‘Beaufort’ was 60% larger than ‘BHN-1088’. This study demonstrated that gross differences exist in RSM of tomato rootstocks and that, when grown in a solid porous medium, these differences can be determined using an image analysis system.}, number={3}, journal={HORTTECHNOLOGY}, publisher={American Society for Horticultural Science}, author={Suchoff, David H. and Gunter, Christopher C. and Louws, Frank J.}, year={2017}, month={Jun}, pages={319–324} } @article{jiang_perkins-veazie_ma_gunter_2017, title={Muskmelon Fruit Quality in Response to Postharvest Essential Oil and Whey Protein Sprays}, volume={52}, ISSN={["2327-9834"]}, DOI={10.21273/hortsci11328-16}, abstractNote={The consumption of fresh muskmelons (Cucumis melo reticulatus L.) has been linked to severe illness outbreaks due to contamination with bacterial pathogens. Antimicrobial essential oils (EOs) were incorporated into wash water sprays and evaluated as potential agents for postharvest disinfection of ‘Athena’ muskmelons. Freshly harvested fruits were sprayed with 0.5% EOs from cinnamon leaf, thyme, or clove bud emulsified in a whey protein emulsion (WP) as potential washing disinfectants, together with deionized water, water with 200 µL·L−1 free chlorine (pH 7, free turbidity), or oil-free WP as controls. Melons were treated, stored at 4 °C and then evaluated weekly for weight loss, rind color, mesocarp firmness and the compositional quality traits soluble solids content (SSC), pH, β-carotene content, and total ascorbic acid (AsA) for up to 21 days. Essential oil–treated melons were not different from controls in fruit quality and composition with the exception of fruits treated with thyme oil, which were statistically lower in SSC (0.8 °Brix) than those treated with water or cinnamon oil treatment. Internal carbon dioxide was statistically higher (≈0.1% higher in value, equal to a 25% increase) in muskmelons receiving whey protein–based treatments after storage for at least 7 days. Overall, our results suggest that EOs as disinfectants have little effect on quality or composition of muskmelon fruit.}, number={6}, journal={HORTSCIENCE}, author={Jiang, Chen and Perkins-Veazie, Penelope and Ma, Guoying and Gunter, Christopher}, year={2017}, month={Jun}, pages={887–891} } @article{chaudhari_jennings_monks_jordan_gunter_louws_2017, title={Response of Drought-Stressed Grafted and Nongrafted Tomato to Postemergence Metribuzin}, volume={31}, ISSN={["1550-2740"]}, DOI={10.1017/wet.2017.12}, abstractNote={Tomato grafting is practiced worldwide as an innovative approach to manage stress from drought, waterlogging, insects, and diseases. Metribuzin is a commonly used herbicide in tomato but has potential to cause injury after application if plants are under stress. The influence of metribuzin on grafted tomato under drought-stress has not been studied. Greenhouse experiments were conducted in Raleigh, NC to determine the tolerance of drought-stressed grafted and non-grafted tomato to metribuzin. The tomato cultivar ‘Amelia’ was used as the scion in grafted tomato, and for the non-grafted control. Two hybrid tomato ‘Beaufort’ and ‘Maxifort’ were used as rootstocks for grafted plants. Drought-stress treatments included: no drought-stress; 3 d of drought-stress before metribuzin application with no drought-stress after application (3 d DSB); and 3 d of drought-stress before metribuzin application with 3 d of drought-stress after application (3 d DSBA). Metribuzin was applied at 550 g ai ha−1. No difference in injury from metribuzin was observed in grafted and non-grafted plants. However, at 7 and 14 d after metribuzin treatment (DMT), less injury was observed on tomato in the 3 d DSBA treatment (5 and 2% injury, respectively) than on plants in the 3 d DSB treatment (15 and 8% injury, respectively) or those that were never drought-stressed (18 and 11% injury, respectively). Photosynthesis and stomatal conductance measured prior to metribuzin application were reduced similarly in grafted and non-grafted tomato subjected to drought-stress. Photosynthesis and stomatal conductance of grafted and non-grafted tomato at 7 DMT was not different among drought-stress treatments or metribuzin treatments. Grafted and non-grafted tomato plants under drought-stress exhibit similar tolerance to metribuzin. The risk of metribuzin injury to grafted tomato under drought-stress is similar to non-grafted tomato.}, number={3}, journal={WEED TECHNOLOGY}, author={Chaudhari, Sushila and Jennings, Katherine M. and Monks, David W. and Jordan, David L. and Gunter, Christopher C. and Louws, Frank J.}, year={2017}, pages={447–454} } @article{chaudhari_jennings_monks_jordan_gunter_mcgowen_louws_2016, title={Critical Period for Weed Control in Grafted and Nongrafted Fresh Market Tomato}, volume={64}, ISSN={["1550-2759"]}, DOI={10.1614/ws-d-15-00049.1}, abstractNote={Field experiments were conducted to determine the critical period for weed control (CPWC) in nongrafted ‘Amelia’ and Amelia grafted onto ‘Maxifort’ tomato rootstock grown in plasticulture. The establishment treatments (EST) consisted of two seedlings each of common purslane, large crabgrass, and yellow nutsedge transplanted at 1, 2, 3, 4, 5, 6, and 12 wk after tomato transplanting (WAT) and remained until tomato harvest to simulate weeds emerging at different times. The removal treatments (REM) consisted of the same weeds transplanted on the day of tomato transplanting and removed at 2, 3, 4, 5, 6, 8, and 12 WAT to simulate weeds controlled at different times. The beginning and end of the CPWC, based on a 5% yield loss of marketable tomato, was determined by fitting log-logistic and Gompertz models to the relative yield data representing REM and EST, respectively. In both grafted and nongrafted tomato, plant aboveground dry biomass increased as establishment of weeds was delayed and tomato plant biomass decreased when removal of weeds was delayed. For a given time of weed removal and establishment, grafted tomato plants produced higher biomass than nongrafted. The delay in establishment and removal of weeds resulted in weed biomass decrease and increase of the same magnitude, respectively, regardless of transplant type. The predicted CPWC was from 2.2 to 4.5 WAT in grafted tomato and from 3.3 to 5.8 WAT in nongrafted tomato. The length (2.3 or 2.5 wk) of the CPWC in fresh market tomato was not affected by grafting; however, the CPWC management began and ended 1 wk earlier in grafted tomato than in nongrafted tomato.}, number={3}, journal={WEED SCIENCE}, author={Chaudhari, Sushila and Jennings, Katherine M. and Monks, David W. and Jordan, David L. and Gunter, Christopher C. and McGowen, Samuel J. and Louws, Frank J.}, year={2016}, pages={523–530} } @article{chaudhari_jennings_monks_jordan_gunter_basinger_louws_2016, title={Response of Eggplant (Solanum melongena) Grafted onto Tomato (Solanum lycopersicum) Rootstock to Herbicides}, volume={30}, ISSN={["1550-2740"]}, DOI={10.1614/wt-d-15-00079.1}, abstractNote={Tomato rootstocks have been successfully used for eggplant production. However, the safety of herbicides registered in tomato has not been tested on grafted eggplant, which is a combination of tomato rootstock and eggplant scion. Greenhouse and field experiments were conducted to determine response of grafted eggplant on tomato rootstock to napropamide, metribuzin, halosulfuron, trifluralin,S-metolachlor, and fomesafen herbicides. In greenhouse experiments, herbicide treatments included pretransplantS-metolachlor (400 and 800 g ai ha−1), pre- or posttransplant metribuzin (140 and 280 g ai ha−1), and posttransplant halosulfuron (18 and 36 g ai ha−1). In field experiments, herbicide treatments included pretransplant fomesafen (280 and 420 g ai ha−1), halosulfuron (39 and 52 g ha−1), metribuzin (280 and 550 g ha−1), napropamide (1,120 and 2,240 g ai ha−1),S-metolachlor (800 and 1,060 g ha−1), and trifluralin (560 and 840 g ai ha−1). The eggplant cultivar ‘Santana' was used as the scion and nongrafted control, and two hybrid tomatoes ‘RST-04−106-T' and ‘Maxifort' were used as rootstocks for grafted plants. In both greenhouse and field experiments, there was no difference between grafted and nongrafted eggplant in terms of injury caused by herbicides. Metribuzin posttransplant at 140 and 280 g ha−1caused 94 and 100% injury to grafted and nongrafted eggplant 4 wk after treatment. In field experiments, pretransplant fomesafen, napropamide,S-metolachlor, and trifluralin caused less than 10% injury and no yield reduction in grafted and nongrafted eggplant. However, metribuzin caused injury and yield reduction in both grafted and nongrafted eggplant. Metribuzin at 550 g ha−1caused 60 and 81% plant stand loss in 2013 and 2014, respectively. Halosulfuron reduced yield 24% in both grafted and nongrafted eggplant compared to nontreated control in 2013 but did not reduce yield in 2014. The pretransplantS-metolachlor, napropamide, fomesafen, and trifluralin are safe to use on eggplant grafted onto tomato rootstock, and will be a valuable addition to the toolkit of eggplant growers.}, number={1}, journal={WEED TECHNOLOGY}, author={Chaudhari, Sushila and Jennings, Katherine M. and Monks, David W. and Jordan, David L. and Gunter, Christopher C. and Basinger, Nicholas T. and Louws, Frank J.}, year={2016}, pages={207–216} } @article{chaudhari_jennings_monks_jordan_gunter_louws_2015, title={Response of Grafted Tomato (Solanum lycopersicum) to Herbicides}, volume={29}, ISSN={["1550-2740"]}, DOI={10.1614/wt-d-15-00037.1}, abstractNote={Tomato grafting has gained increased attention in the United States as an alternative to methyl bromide to control soilborne pests and diseases. Although several herbicides are registered in tomato production, a lack of information exists on the effect of herbicides on grafted tomato. Greenhouse and field experiments were conducted to determine herbicide tolerance of grafted tomato. In greenhouse experiments, halosulfuron (27, 54, and 108 g ai ha−1), metribuzin (280, 560, and 1,120 g ai ha−1), andS-metolachlor (1,070, 2,140, and 3,200 g ai ha−1) were applied posttransplant to nongrafted ‘Amelia' and Amelia scion grafted onto ‘Maxifort' or ‘RST-04-106-T' tomato rootstocks. Although herbicide injury was observed, no differences were observed in grafted and nongrafted tomato response including visible injury assessments, plant height, and fresh weight. Tomato injury at 3 wk after herbicide application increased from 3 to 12, 1 to 87, and 0 to 37% as rate of halosulfuron, metribuzin, andS-metolachlor increased, respectively. In field experiments under plasticulture, herbicides applied pretransplant included fomesafen (280 and 420 g ai ha−1), halosulfuron (39 and 54 g ha−1), metribuzin (280 and 560 g ha−1), napropamide (1,120 and 2,240 g ha−1),S-metolachlor (800 and 1,070 g ha−1), and trifluralin (560 and 840 g ai ha−1). Amelia was used as the scion and the nongrafted control. ‘Anchor-T', ‘Beaufort', or Maxifort tomato were used as rootstocks for grafted plants. Fomesafen, halosulfuron, napropamide, and trifluralin initially caused greater injury to grafted tomato than to nongrafted tomato regardless of rootstock (Anchor-T, Beaufort, or Maxifort). However, by 4 wk after treatment, all grafted and nongrafted plants had recovered from herbicide injury. A transplant type-by-herbicide interaction was not observed for yield, but grafted A-Maxifort tomato produced greater total and marketable yield than nongrafted Amelia tomato. Grafted tomato exhibited similar tolerance as nongrafted tomato for all herbicides applied post- and pretransplant.}, number={4}, journal={WEED TECHNOLOGY}, publisher={Cambridge University Press (CUP)}, author={Chaudhari, Sushila and Jennings, Katherine M. and Monks, David W. and Jordan, David L. and Gunter, Christopher C. and Louws, Frank J.}, year={2015}, pages={800–809} } @article{suchoff_louws_gunter_schultheis_2014, title={2013 On-farm Grafted Tomato Trial to Manage Bacterial Wilt}, volume={1086}, ISSN={["0567-7572"]}, DOI={10.17660/actahortic.2015.1086.14}, abstractNote={Grossing over $33.7 million in annual sales, North Carolina ranks 7th in the US for the production of tomatoes (Solanum lycopersicum). A replicated on-farm trial was conducted in Rowan County, NC. On May 30th, 2013, 8.1 ha of two bacterial wilt (BW; R. solanacearum (race 1)) resistant rootstocks were planted. The objective of this trial was to evaluate disease susceptibility and production in fields with BW history. In addition, plant spacing and training systems were compared. Two experimental sites, one fumigated and one non-fumigated, were arranged in a randomized complete block design with four replications, each consisting of 91.4 m-rows in a commercial plasticulture system. Each row contained 13 10-plant treatment plots (2A—2A—3 Factorial + Control): two rootstocks (‘801’, ‘802’; Rijk Zwaan), two training systems (single-leader, double-leaders), three between-plant spacings (45.7, 61.0, and 76.2 cm) with ‘Mountain Fresh’ as the scion and a non-grafted ‘Mountain Fresh’ control spaced at 45.7 cm. Wilt incidence was collected during the two harvests. Fruit were harvested twice at 69 and 84 days after transplanting. Wilt incidence was lower in the non-fumigated field and no differences in yield between the grafted and non-grafted plants were observed. In the fumigated field, the main effect of grafting tended to increase yield. Both the main effect of training system and spacing significantly affected yield in the grafted treatments. BW incidence was significantly higher in the non-grafted treatment (29.08%) than ‘801’ and ‘802’ rootstocks (0.909 and 0.183%, respectively) (P<.0001). Single-leader grafted plants had 2.54% more BW incidence than double-leader plants (P=0.0007). Grafted tomatoes offered an alternative method to fumigation as a means to reduce BW loss and sustain marketable yield.}, number={1086}, journal={Acta Horticulturae (ISHS)}, publisher={International Society for Horticultural Science (ISHS)}, author={Suchoff, D.H. and Louws, F.J. and Gunter, C.C. and Schultheis, J.R.}, year={2014}, pages={119–127} } @article{biai_garzon_osborne_schultheis_gehl_gunter_2013, title={Bell Pepper Seedling Phytotoxicity Due to Abscisic Acid Drench Applications}, volume={19}, ISSN={1931-5260 1931-5279}, url={http://dx.doi.org/10.1080/19315260.2011.650297}, DOI={10.1080/19315260.2011.650297}, abstractNote={Bell pepper transplant height control is essential to produce a strong plant capable of surviving the transplant process. Transplant producers are interested in environmental, physical, and chemical methods to control plant height in the greenhouse. One emerging technology for transplant height control on bell pepper is the use abscisic acid (ABA); however, at high doses some phytotoxicity has been observed. Greenhouse experiments were conducted to determine the degree of phytotoxicity induced by an exogenous drench application of abscisic acid on ‘Aristotle’ bell pepper (Capsicum annuum L.), seedlings. Abscisic acid concentrations (1,000, 5,000, 10,000, 25,000, and 50,000 mg·L−1) were applied over a 1- to 5-week period beginning at the cotyledon stage, in addition to an untreated control. Plant survival for the control and the 1,000 mg·L−1 (baseline treatments) was significantly greater compared to a single application or multiple applications of greater concentrations. The results indicated that applying higher concentrations of ABA (5,000 mg·L−1 or more) using multiple lower concentration applications provided lower hazard ratios and increased longevity compared to a single higher concentration application. The ABA delivered as a drench at the cotyledon stage at concentrations of 5,000 mg·L−1 or below can control transplant height with no visible phytotoxicity.}, number={1}, journal={International Journal of Vegetable Science}, publisher={Informa UK Limited}, author={Biai, Christopher J. and Garzon, José G. and Osborne, Jason A. and Schultheis, Jonathan R. and Gehl, Ronald J. and Gunter, Christopher C.}, year={2013}, month={Jan}, pages={4–12} } @article{gunter_egel_2012, title={Staminate Flower Production and Fusarium Wilt Reaction of Diploid Cultivars Used as Pollenizers for Triploid Watermelon}, volume={22}, ISSN={["1943-7714"]}, DOI={10.21273/horttech.22.5.694}, abstractNote={Several cultivars of nonharvested watermelon (Citrullus lanatus) pollenizers were compared for staminate flower production in field tests and disease reaction to fusarium wilt [Fusarium oxysporum f. sp. Niveum (FON)] in both greenhouse and field tests. Differences were observed in staminate flower counts and fusarium wilt reactions in both years of field evaluations and to fusarium wilt among cultivars evaluated in the greenhouse. ‘SP-1’, ‘Sidekick’, and ‘5WDL 6146’ were the cultivars with high staminate flower counts in the field both years. These cultivars also were among the most resistant to fusarium wilt in both years of field tests. Significant correlations occurred between the rankings of the cultivar’s fusarium wilt reactions in both the two field and three greenhouse experiments, indicating a high degree of correlation between field and greenhouse tests.}, number={5}, journal={HORTTECHNOLOGY}, author={Gunter, Chris and Egel, Daniel S.}, year={2012}, month={Oct}, pages={694–699} } @article{biai_garzon_osborne_schultheis_gehl_gunter_2011, title={Height control in three pepper types treated with drench-applied abscisic acid}, volume={46}, number={9}, journal={HortScience}, author={Biai, C. J. and Garzon, J. G. and Osborne, J. A. and Schultheis, J. R. and Gehl, R. J. and Gunter, C. C.}, year={2011}, pages={1265–1269} } @article{gunter_palta_2008, title={Exchangeable soil calcium may not reliably predict in-season calcium requirements for enhancing potato tuber calcium concentration}, volume={85}, ISSN={["1099-209X"]}, DOI={10.1007/s12230-008-9025-3}, number={5}, journal={AMERICAN JOURNAL OF POTATO RESEARCH}, author={Gunter, Christopher C. and Palta, Jiwan P.}, year={2008}, month={Oct}, pages={324–331} } @article{egel_martyn_gunter_2008, title={Planting method, plastic mulch, and fumigation influence growth, yield and root structure of watermelon}, volume={43}, ISSN={["0018-5345"]}, DOI={10.21273/hortsci.43.5.1410}, abstractNote={A 2-year field study was conducted to determine the influence of planting method, i.e., transplanting or direct seeding, black plastic mulch, and soil fumigation on the vine growth, yield, and root structure of diploid hybrid watermelon. The experiment was a split-plot design with fumigation as the main plot and there were four replications. Methyl bromide (337 L·ha−1) was applied to the soil, which was then tarped. Black plastic mulch, 0.61 m wide × 2 mil (Visqueen 4020™) was applied to appropriate rows. Vine growth was measured during the season and yield was determined by the number and weight of fruit from each treatment. After fruit harvest, plant roots were excavated so that root structure was maintained with minimal damage and roots were photographed. Root systems were scored for tap root dominance and overall root distribution. Direct-seeded watermelon had more vine growth and higher yields in both years than transplanted watermelon. The advantage of direct seeding was likely the result of the growth and root expansion that occurred for these plants while the transplants were still in the greenhouse. Direct-seeded plants also displayed greater tap root dominance in each year than transplanted watermelon. Roots of both direct-seeded plants and transplants had a greater range in size distribution in both years under plastic mulch than those grown on bare ground. In late-planted watermelon, direct-seeded plants had more favorable vine growth and yield without the aberrant roots systems produced by transplants.}, number={5}, journal={HORTSCIENCE}, author={Egel, Daniel S. and Martyn, Ray and Gunter, Chris}, year={2008}, month={Aug}, pages={1410–1414} }