@article{jhon_bhat_jeong_rojas_szleifer_genzer_2006, title={Salt-induced depression of lower critical solution temperature in a surface-grafted neutral thermoresponsive polymer}, volume={27}, ISSN={["1521-3927"]}, DOI={10.1002/marc.200600031}, abstractNote={AbstractSummary: Quartz crystal microbalance with dissipation monitoring (QCM‐D) is employed to determine the effect of salt on the volume phase transition of thermoresponsive polymer brushes. Changes in mass and viscoelasticity of poly(N‐isopropylacrylamide) (PNIPAM) layers grafted from a QCM‐D crystal are measured as a function of temperature, upon contact with aqueous solutions of varying salt concentrations. The phase‐transition temperature of PNIPAM brushes, TC,graft, quantified from the QCM‐D measurements is found to decrease as the concentration of salt is increased. This phenomenon is explained by the tendency of salt ions to affect the structure of water molecules (Hofmeister effect). However, in contrast to the linear decrease in phase‐transition temperature upon increasing salt concentration observed for free PNIPAM, the trend in TC,graft for PNIPAM brushes is distinctively non‐linear.Schematic representation of the effect of salt concentration on the phase transition behavior of thermoresponsive polymer brushes.magnified imageSchematic representation of the effect of salt concentration on the phase transition behavior of thermoresponsive polymer brushes. }, number={9}, journal={MACROMOLECULAR RAPID COMMUNICATIONS}, author={Jhon, Young K. and Bhat, Rajendra R. and Jeong, Changwoo and Rojas, Orlando J. and Szleifer, Igal and Genzer, Jan}, year={2006}, month={May}, pages={697–701} }