@article{stapleford_froehlich_kneller_2020, title={Coupling neutrino oscillations and simulations of core-collapse supernovae}, volume={102}, ISSN={["1550-2368"]}, url={http://dx.doi.org/10.1103/physrevd.102.081301}, DOI={10.1103/PhysRevD.102.081301}, abstractNote={At the present time even the most sophisticated, multi-dimensional simulations of core-collapse supernovae do not (self-consistently) include neutrino flavor transformation. This physics is missing despite the importance of neutrinos in the core-collapse explosion paradigm. Because of this dependence, any flavor transformation that occurs in the region between the proto-neutron star and the shock could result in major effects upon the dynamics of the explosion. We present the first hydrodynamic core-collapse supernova simulation which simultaneously includes flavor transformation of the free-streaming neutrinos in the neutrino transport. These oscillation calculations are dynamically updated and evolve self-consistently alongside the hydrodynamics. Using a $M=20\;{\rm M_{\odot}}$ progenitor, we find that while the oscillations have an effect on the neutrino emission and the heating rates, flavor transformation alone does not lead to a successful explosion of this progenitor in spherical symmetry.}, number={8}, journal={PHYSICAL REVIEW D}, publisher={American Physical Society (APS)}, author={Stapleford, Charles J. and Froehlich, Carla and Kneller, James P.}, year={2020}, month={Oct} }