@article{wilson_frank_2023, title={Scale insects contribute to spider conservation in urban trees and shrubs}, volume={3}, ISSN={["1572-9753"]}, DOI={10.1007/s10841-023-00471-1}, journal={JOURNAL OF INSECT CONSERVATION}, author={Wilson, Caleb J. and Frank, Steven D.}, year={2023}, month={Mar} } @article{wilson_backe_just_lahr_nagle_long_dale_frank_2023, title={Tree species richness around urban red maples reduces pest density but does not enhance biological control}, volume={88}, ISSN={["1610-8167"]}, DOI={10.1016/j.ufug.2023.128093}, abstractNote={Urban trees often host greater insect pest abundance than trees in rural forests. This may be due, in part, to differences in tree diversity and canopy cover between these settings. Urban trees are often planted in isolation or monoculture, which favors pest accumulation. Gloomy scale, Melanaspis tenebricosa Comstock, is a pest of urban red maples (Acer rubrum L.) that is abundant where impervious surfaces dominate the local landscape. Increasing tree diversity and canopy cover around urban red maples may reduce gloomy scale abundance by supporting natural enemy communities. We investigated the effect that surrounding tree species richness and tree canopy cover had on gloomy scale abundance, natural enemy abundance, and biological control in red maple trees in Raleigh, NC, USA. We collected scales and natural enemies from red maples that spanned a gradient of tree species richness, canopy cover, and impervious surface values. We also measured gloomy scale parasitism and predation of sentinel prey in red maple canopies. Greater tree species richness and canopy cover were associated with lower gloomy scale density. Red maples in diverse settings also hosted fewer scales per natural enemy. Parasitoids were less common in maples in diverse settings, but generalist predator abundance was unaffected by tree diversity. Finally, tree species richness and canopy cover did not increase biological control of scales or sentinel prey. Our findings suggest that higher tree diversity and greater canopy cover may reduce gloomy scale density, but this is not entirely explained by the effects of natural enemies and biological control.}, journal={URBAN FORESTRY & URBAN GREENING}, author={Wilson, Caleb J. and Backe, Kristi M. and Just, Michael G. and Lahr, Eleanor C. and Nagle, Annemarie M. and Long, Lawrence C. and Dale, Adam G. and Frank, Steven D.}, year={2023}, month={Oct} } @article{wilson_frank_2023, title={Urban tree pests can support biological control services in landscape shrubs}, volume={3}, ISSN={["1573-8248"]}, DOI={10.1007/s10526-023-10192-8}, journal={BIOCONTROL}, author={Wilson, Caleb J. J. and Frank, Steven D. D.}, year={2023}, month={Mar} } @article{wilson_frank_2022, title={Scale Insects Support Natural Enemies in Both Landscape Trees and Shrubs Below Them}, volume={10}, ISSN={["1938-2936"]}, DOI={10.1093/ee/nvac081}, abstractNote={Abstract Scale insects are frequently abundant on urban trees. Although scales can worsen tree condition, some tree species tolerate moderate scale densities. Scales are prey for many natural enemies. Therefore, scale-infested trees may conserve natural enemies in their canopies and in nearby plants. We examined if scale-infested oaks—Quercus phellos L.—hosted more natural enemies than scale-uninfested oaks—Q. acutissima Carruth. and Q. lyrata Walter in Raleigh, NC. USA. We also tested if natural enemies were more abundant in holly shrubs (Ilex spp.) planted below scale-infested compared to scale-uninfested oaks. We collected natural enemies from the canopies of both tree types and from holly shrubs planted below these trees. To determine if tree type affected the abundance of natural enemies that passively dispersed to shrubs, we created hanging cup traps to collect arthropods as they fell from trees. To determine if natural enemies became more abundant on shrubs below scale-infested compared to scale-uninfested trees over short time scales, we collected natural enemies from holly shrubs below each tree type at three to six-day intervals. Scale-infested trees hosted more natural enemies than scale-uninfested trees and shrubs below scale-infested trees hosted more natural enemies than shrubs under scale-uninfested trees. Natural enemy abundance in hanging cup traps did not differ by tree type; however, shrubs underneath scale-infested trees accumulated more natural enemies than shrubs under scale-uninfested trees in six to nine days. Tolerating moderate pest densities in urban trees may support natural enemy communities, and thus biological control services, in shrubs below them.}, journal={ENVIRONMENTAL ENTOMOLOGY}, author={Wilson, Caleb J. and Frank, Steven D.}, year={2022}, month={Oct} } @article{fitch_wilson_glaum_vaidya_simao_jamieson_2019, title={Does urbanization favour exotic bee species? Implications for the conservation of native bees in cities}, volume={15}, ISSN={["1744-957X"]}, DOI={10.1098/rsbl.2019.0574}, abstractNote={A growing body of research indicates that cities can support diverse bee communities. However, urbanization may disproportionately benefit exotic bees, potentially to the detriment of native species. We examined the influence of urbanization on exotic and native bees using two datasets from Michigan, USA. We found that urbanization positively influenced exotic—but not native—bee abundance and richness, and that this association could not be explained by proximity to international ports of entry, prevalence of exotic flora or urban warming. We found a negative relationship between native and exotic bee abundance at sites with high total bee abundance, suggesting that exotic bees may negatively affect native bee populations. These effects were not driven by the numerically dominant exotic honeybee, but rather by other exotic bees. Our findings complicate the emerging paradigm of cities as key sites for pollinator conservation.}, number={12}, journal={BIOLOGY LETTERS}, author={Fitch, Gordon and Wilson, Caleb J. and Glaum, Paul and Vaidya, Chatura and Simao, Maria-Carolina and Jamieson, Mary A.}, year={2019}, month={Dec} } @article{jamieson_carper_wilson_scott_gibbs_2019, title={Geographic Biases in Bee Research Limits Understanding of Species Distribution and Response to Anthropogenic Disturbance}, volume={7}, ISSN={["2296-701X"]}, DOI={10.3389/fevo.2019.00194}, abstractNote={Habitat loss and degradation due to agricultural intensification and urbanization are key threats facing wild pollinators, especially bees. However, data on the distribution and abundance of most of the world’s 20,000+ bee species is lacking, making it difficult to assess the effects of anthropogenic disturbance through time. Moreover, there are geographic biases in the study of bees creating gaps in our understanding of species distributions and regional patterns of diversity. Research efforts are often focused around cities or field stations associated with universities and other research institutions. In this perspectives paper, we provide examples of geographic bias in knowledge regarding bee species distributions using recently collected data from Michigan and Colorado, USA—two states with published species checklists. We illustrate how a limited sampling effort can advance knowledge about bee species distributions, yielding species occurrence records at local and regional scales. Given the implications of geographic biases, we recommend future research efforts focus on poorly sampled geographic regions, especially those affected by anthropogenic disturbance, in order to expand our understanding of human impacts on wild bee species. Sampling across a broader geographic area will provide critical information for taxonomy and predictive models of bee species distributions and diversity. We encourage researchers to plan future studies with consideration of strategies to avoid oversampling local bee populations, the taxonomic expertise required to identify specimens, and resources necessary to voucher specimens.}, journal={FRONTIERS IN ECOLOGY AND EVOLUTION}, author={Jamieson, Mary A. and Carper, Adrian L. and Wilson, Caleb J. and Scott, Virginia L. and Gibbs, Jason}, year={2019}, month={Jun} } @article{wilson_jamieson_2019, title={The effects of urbanization on bee communities depends on floral resource availability and bee functional traits}, volume={14}, ISSN={["1932-6203"]}, DOI={10.1371/journal.pone.0225852}, abstractNote={Wild bees are important pollinators in many ecosystems threatened by anthropogenic disturbance. Urban development can reduce and degrade natural habitat for bees and other pollinators. However, some researchers suggest that cities could also provide refuge for bees, given that agricultural intensification may pose a greater risk. In this study, we surveyed bee communities at 15 farms and gardens across an urban-rural gradient in southeastern Michigan, USA to evaluate the effect of urbanization on bees. We examined how floral resources, bee functional traits, temperature, farm size, and the spatial scale of analysis influence bee response to urbanization. We found that urbanization positively affected bee diversity and evenness but had no effect on total abundance or species richness. Additionally, urbanization altered bee community composition via differential effects on bee species and functional groups. More urbanized sites supported a greater number of exotic, above-ground nesting, and solitary bees, but fewer eusocial bees. Blooming plant species richness positively influenced bee species diversity and richness. Furthermore, the amount of available floral resources was positively associated with exotic and eusocial bee abundances. Across sites, nearly 70% of floral resources were provided by exotic plants, most of which are characterized as weedy but not invasive. Our study demonstrates that urbanization can benefit some bee species and negatively impact others. Notably, Bombus and Lasioglossum (Dialictus), were two important pollinator groups negatively affected by urbanization. Our study supports the idea that urban environments can provide valuable habitat for diverse bee communities, but demonstrates that some bees are vulnerable to urbanization. Finally, while our results indicate that increasing the abundance and richness of floral resources could partially compensate for negative effects of urbanization on bees, the effectiveness of such measures may be limited by other factors, such as urban warming.}, number={12}, journal={PLOS ONE}, author={Wilson, Caleb J. and Jamieson, Mary A.}, year={2019}, month={Dec} }