@article{mcclure_oldham_parsons_2015, title={Effect of Al2O3 ALD coating and vapor infusion on the bulk mechanical response of elastic and viscoelastic polymers}, volume={261}, url={http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000348255500055&KeyUID=WOS:000348255500055}, DOI={10.1016/j.surfcoat.2014.10.029}, abstractNote={Polymer films and fibers are often coated with thin films by techniques including sputtering, chemical vapor deposition (CVD) and atomic layer deposition (ALD), to add resilience, impede water transport and provide chemical functionalization. Vapor processing also allows chemical precursors to diffuse and react in the near surface and bulk regions of the polymer. In this work we investigate how low temperature ALD Al2O3 coatings formed at < 100 °C modify bulk mechanical properties of nylon 6, polypropylene, and Pellethane, a commercial polymer elastomer. Transmission electron microscopy shows evidence for subsurface reactant penetration for all these polymers. The ALD treatment tends to increase the Young's modulus during the first ~ 200 ALD cycles, especially for the nylon 6 and elastomer, consistent with the expected polymer/precursor reactivity. However, the ALD coating generally embrittles the polymers, causing them to rupture under smaller applied strain. The embrittlement, however, is minimal for the viscoelastic polymer, so that the improved modulus during ALD treatment could improve its overall mechanical strength and performance. Chemical mechanisms for the mechanical changes are discussed. Overall, the results suggest that further analysis of ALD processes could lead to new means to improve mechanical function of synthetic polymers.}, journal={Surface & Coatings Technology}, author={McClure, Christina D. and Oldham, Christopher J. and Parsons, Gregory}, year={2015}, pages={411–417} } @article{hilton_taylor_mcclure_parsons_bonner_bereman_2015, title={Toxicoproteomic analysis of pulmonary carbon nanotube exposure using LC-MS/MS}, volume={329}, ISSN={["0300-483X"]}, url={http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000350519500009&KeyUID=WOS:000350519500009}, DOI={10.1016/j.tox.2015.01.011}, abstractNote={Toxicoproteomics is a developing field that utilizes global proteomic methodologies to investigate the physiological response as a result of adverse toxicant exposure. The aim of this study was to compare the protein secretion profile in lung bronchoalveolar lavage fluid (BALF) from mice exposed to non-functionalized multi-walled carbon nanotubes (U-MWCNTs) or MWCNTs functionalized by nanoscale Al2O3 coatings (A-MWCNT) formed using atomic layer deposition (ALD). Proteins were identified using liquid chromatography tandem mass spectrometry (LC-MS/MS), and quantified using a combination of two label-free proteomic methods: spectral counting and MS1 peak area analysis. On average 465 protein groups were identified per sample and proteins were first screened using spectral counting and the Fisher’s exact test to determine differentially regulated species. Significant proteins by Fisher’s exact test (p < 0.05) were then verified by integrating the intensity under the extracted ion chromatogram from a single unique peptide for each protein across all runs. A two sample t-test based on integrated peak intensities discovered differences in 27 proteins for control versus U-MWCNT, 13 proteins for control versus A-MWCNT, and 2 proteins for U-MWCNT versus A-MWCNT. Finally, an in-vitro binding experiment was performed yielding 4 common proteins statistically different (p < 0.05) for both the in-vitro and in-vivo study. Several of the proteins found to be significantly different between exposed and control groups are known to play a key role in inflammatory and immune response. A comparison between the in-vitro and in-vivo CNT exposure emphasized a true biological response to CNT exposure.}, journal={TOXICOLOGY}, author={Hilton, Gina M. and Taylor, Alexia J. and McClure, Christina D. and Parsons, Gregory N. and Bonner, James C. and Bereman, Michael S.}, year={2015}, month={Mar}, pages={80–87} } @article{taylor_mcclure_shipkowski_thompson_hussain_garantziotis_parsons_bonner_2014, title={Atomic Layer Deposition Coating of Carbon Nanotubes with Aluminum Oxide Alters Pro-Fibrogenic Cytokine Expression by Human Mononuclear Phagocytes In Vitro and Reduces Lung Fibrosis in Mice In Vivo}, volume={9}, ISSN={["1932-6203"]}, url={http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000341774300028&KeyUID=WOS:000341774300028}, DOI={10.1371/journal.pone.0106870}, abstractNote={Background Multi-walled carbon nanotubes (MWCNTs) pose a possible human health risk for lung disease as a result of inhalation exposure. Mice exposed to MWCNTs develop pulmonary fibrosis. Lung macrophages engulf MWCNTs and produce pro-fibrogenic cytokines including interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and osteopontin (OPN). Atomic layer deposition (ALD) is a novel process used to enhance functional properties of MWCNTs, yet the consequence of ALD-modified MWCNTs on macrophage biology and fibrosis is unknown. Methods The purpose of this study was to determine whether ALD coating with aluminum oxide (Al2O3) would alter the fibrogenic response to MWCNTs and whether cytokine expression in human macrophage/monocytes exposed to MWCNTs in vitro would predict the severity of lung fibrosis in mice. Uncoated (U)-MWCNTs or ALD-coated (A)-MWCNTs were incubated with THP-1 macrophages or human peripheral blood mononuclear cells (PBMC) and cell supernatants assayed for cytokines by ELISA. C57BL6 mice were exposed to a single dose of A- or U-MWCNTs by oropharyngeal aspiration (4 mg/kg) followed by evaluation of histopathology, lung inflammatory cell counts, and cytokine levels at day 1 and 28 post-exposure. Results ALD coating of MWCNTs with Al2O3 enhanced IL-1β secretion by THP-1 and PBMC in vitro, yet reduced protein levels of IL-6, TNF-α, and OPN production by THP-1 cells. Moreover, Al2O3 nanoparticles, but not carbon black NPs, increased IL-1β but decreased OPN and IL-6 in THP-1 and PBMC. Mice exposed to U-MWCNT had increased levels of all four cytokines assayed and developed pulmonary fibrosis by 28 days, whereas ALD-coating significantly reduced fibrosis and cytokine levels at the mRNA or protein level. Conclusion These findings indicate that ALD thin film coating of MWCNTs with Al2O3 reduces fibrosis in mice and that in vitro phagocyte expression of IL-6, TNF-α, and OPN, but not IL-1β, predict MWCNT-induced fibrosis in the lungs of mice in vivo.}, number={9}, journal={PLOS ONE}, author={Taylor, Alexia J. and McClure, Christina D. and Shipkowski, Kelly A. and Thompson, Elizabeth A. and Hussain, Salik and Garantziotis, Stavros and Parsons, Gregory N. and Bonner, James C.}, year={2014}, month={Sep} } @article{mcclure_oldham_walls_parsons_2013, title={Large effect of titanium precursor on surface reactivity and mechanical strength of electrospun nanofibers coated with TiO2 by atomic layer deposition}, volume={31}, ISSN={["0734-2101"]}, url={http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000327253900031&KeyUID=WOS:000327253900031}, DOI={10.1116/1.4817718}, abstractNote={Encapsulating and functionalizing polymer nanofibers can improve the polymers chemical resistance and surface reactivity, enabling new applications including biosensing, flexible electronics, gas filtration, and chemical separations. Polymer fiber functionalization typically involves energy intensive wet chemical treatments and/or plasma exposure. Recent results show low temperature atomic layer deposition (ALD) to be a viable means to coat nanofibers with uniform and conformal inorganic and hybrid organic–inorganic layers. For this article, the authors describe how the mechanical properties of nylon-6 nanofibers are affected by ALD coatings of TiO2 and other metal oxides. They find that the stress–strain behavior of nylon-6 nanofibers depends strongly on the specific precursor chemistry used in the coating process. For ALD TiO2 coatings, titanium tetrachloride tended to embrittle the fibers, whereas titanium isopropoxide had a more subtle effect. Physical characterization shows that the TiCl4 diffused into the nylon-6 and reacted subsurface, whereas the titanium isopropoxide tended to react on the surface producing a more abrupt organic/inorganic interface. Results show that precursor choice is an important factor when designing thin film coating processes on polymeric substrates.}, number={6}, journal={JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A}, author={McClure, Christina D. and Oldham, Christopher J. and Walls, Howard J. and Parsons, Gregory N.}, year={2013} } @misc{parsons_atanasov_dandley_devine_gong_jur_lee_oldham_peng_spagnola_et al._2013, title={Mechanisms and reactions during atomic layer deposition on polymers}, volume={257}, ISSN={["1873-3840"]}, url={http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000327915000012&KeyUID=WOS:000327915000012}, DOI={10.1016/j.ccr.2013.07.001}, abstractNote={There is significant growing interest in atomic layer deposition onto polymers for barrier coatings, nanoscale templates, surface modification layers and other applications. The ability to control the reaction between ALD precursors and polymers opens new opportunities in ALD materials processing. It is well recognized that ALD on many polymers involves subsurface precursor diffusion and reaction which are not encountered during ALD on solid surfaces. This article reviews recent insights into chemical reactions that proceed during ALD on polymers, with particular focus on the common Al2O3 reaction sequence using trimethyl aluminum (TMA) and water. We highlight the role of different polymer reactive groups in film growth, and how the balance between precursor diffusion and reaction can change as deposition proceeds. As a strong Lewis acid, TMA forms adducts with Lewis base sites within the polymer, and the reactions that proceed are determined by the neighboring bond structure. Moreover, the Lewis base sites can be saturated by TMA, producing a self-limiting half-reaction within a three-dimensional polymer, analogous to a self-limiting half-reaction commonly observed during ALD on a solid planar surface.}, number={23-24}, journal={COORDINATION CHEMISTRY REVIEWS}, author={Parsons, Gregory N. and Atanasov, Sarah E. and Dandley, Erinn C. and Devine, Christina K. and Gong, Bo and Jur, Jesse S. and Lee, Kyoungmi and Oldham, Christopher J. and Peng, Qing and Spagnola, Joseph C. and et al.}, year={2013}, month={Dec}, pages={3323–3331} } @article{mcclure_devine_jiang_chu_cuomo_parsons_fedkiw_2013, title={Oxygen Electroreduction on Ti- and Fe-Containing Carbon Fibers}, volume={160}, ISSN={["1945-7111"]}, url={http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000324810000079&KeyUID=WOS:000324810000079}, DOI={10.1149/2.029308jes}, abstractNote={A mixture of iron (II) phthalocyanine and polyacrylonitrile (PAN) was electrospun into fibers and pyrolyzed to form Fe-containing carbon fibers (Fe-PAN). Subsequent atomic layer deposition (ALD) coated the fibers with TiOy deposits (TiOy-Fe-PAN). Scanning transmission electron microscopy equipped with energy dispersive spectroscopy (STEM-EDS) detected C, Fe, and Ti across the diameter of the fiber, and X-ray photoelectron spectroscopy (XPS) revealed Fe(III) and CNx species present. After the ALD process, XPS revealed TiOy species on the Fe-PAN fibers, and heat-treating the TiOy-Fe-PAN samples created TiNxOy and TiNx species. Heat-treating Fe-PAN and TiOy-Fe-PAN samples resulted in a slight decrease in the Fe wt.% but affected an increase in the oxygen reduction reaction (ORR) activity in 0.5M H2SO4 at room temperature compared to the samples not heat treated. Moreover, the presence of Ti species decreased the production of H2O2 and increased the mass activity of the ORR on fibers subjected to cyclic potential excursions relative to samples without Ti species.}, number={8}, journal={JOURNAL OF THE ELECTROCHEMICAL SOCIETY}, author={McClure, Joshua P. and Devine, Christina K. and Jiang, Rongzhong and Chu, Deryn and Cuomo, Jerome J. and Parsons, Gregory N. and Fedkiw, Peter S.}, year={2013}, pages={F769–F778} } @article{loebl_oldham_devine_gong_atanasov_parsons_fedkiw_2013, title={Solid Electrolyte Interphase on Lithium-Ion Carbon Nanofiber Electrodes by Atomic and Molecular Layer Deposition}, volume={160}, ISSN={["1945-7111"]}, url={http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000326905000006&KeyUID=WOS:000326905000006}, DOI={10.1149/2.020311jes}, abstractNote={Carbon nanofibers were coated with Al2O3 by atomic layer deposition (ALD) or with an alumina-organic hybrid thin film layer by molecular layer deposition (MLD) to produce an artificial solid electrolyte interphase (SEI) prior to use as a lithium-ion battery electrode. The elemental composition of the materials was investigated using energy dispersive X-ray spectroscopy (EDX) and inductively coupled plasma mass spectrometry (ICP-MS). A coating of ten Al2O3 layers reduced the lithium lost to the SEI formation from 359 to 291 mAh/g (24%) during the first charge. These same cells possessed 370 mAh/g of stable reversible capacity when tested at low current density (25 mA/g), similar to uncoated material. At increased currents, Al2O3 films of either ten or twenty layers lowered the capacity retention when compared with uncoated materials. When compared to the ALD material, films deposited by MLD resulted in less improvement to reversible capacity and a greater loss of reversible capacity. These results indicate the use of ALD to create a new electrode surface and mitigate the Li losses to SEI formation may be a viable method of addressing the challenges associated with high-surface area electrode materials.}, number={11}, journal={JOURNAL OF THE ELECTROCHEMICAL SOCIETY}, author={Loebl, Andrew J. and Oldham, Christopher J. and Devine, Christina K. and Gong, Bo and Atanasov, Sarah E. and Parsons, Gregory N. and Fedkiw, Peter S.}, year={2013}, pages={A1971–A1978} } @article{kim_koo_jur_woodroof_kalanyan_lee_devine_parsons_2012, title={Stable anatase TiO2 coating on quartz fibers by atomic layer deposition for photoactive light-scattering in dye-sensitized solar cells}, volume={4}, ISSN={["2040-3372"]}, url={http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000306324000056&KeyUID=WOS:000306324000056}, DOI={10.1039/c2nr30939d}, abstractNote={Quartz fibers provide a unique high surface-area substrate suitable for conformal coating using atomic layer deposition (ALD), and are compatible with high temperature annealing. This paper shows that the quartz fiber composition stabilizes ALD TiO(2) in the anatase phase through TiO(2)-SiO(2) interface formation, even after annealing at 1050 °C. When integrated into a dye-sensitized solar cell, the TiO(2)-coated quartz fiber mat improves light scattering performance. Results also confirm that annealing at high temperature is necessary for better photoactivity of ALD TiO(2), which highlights the significance of quartz fibers as a substrate. The ALD TiO(2) coating on quartz fibers also boosts dye adsorption and photocurrent response, pushing the overall efficiency of the dye-cells from 6.5 to 7.4%. The mechanisms for improved cell performance are confirmed using wavelength-dependent incident photon to current efficiency and diffuse light scattering results. The combination of ALD and thermal processing on quartz fibers may enable other device structures for energy conversion and catalytic reaction applications.}, number={15}, journal={NANOSCALE}, author={Kim, Do Han and Koo, Hyung-Jun and Jur, Jesse S. and Woodroof, Mariah and Kalanyan, Berc and Lee, Kyoungmi and Devine, Christina K. and Parsons, Gregory N.}, year={2012}, pages={4731–4738} } @article{gong_peng_jur_devine_lee_parsons_2011, title={Sequential Vapor Infiltration of Metal Oxides into Sacrificial Polyester Fibers: Shape Replication and Controlled Porosity of Microporous/Mesoporous Oxide Monoliths}, volume={23}, ISSN={0897-4756 1520-5002}, url={http://dx.doi.org/10.1021/cm200694w}, DOI={10.1021/cm200694w}, abstractNote={The preparation of microporous and mesoporous metal oxide materials continues to attract considerable attention, because of their possible use in chemical separations, catalyst support, chemical sensors, optical and electronic devices, energy storage, and solar cells. While many methods are known for the synthesis of porous materials, researchers continue to seek new methods to control pore size distribution and macroscale morphology. In this work, we show that sequential vapor infiltration (SVI) can yield shape-controlled micro/mesoporous materials with tunable pore size, using polyesters as a sacrificial template. The reaction proceeds by exposing polymer fiber templates to a controlled sequence of metal organic and co-reactant vapor exposure cycles in an atomic layer deposition (ALD) reactor. The precursors infuse sequentially and thereby distribute and react uniformly within the polymer, to yield an organic–inorganic hybrid material that retains the physical dimensions of the original polymer template...}, number={15}, journal={Chemistry of Materials}, publisher={American Chemical Society (ACS)}, author={Gong, Bo and Peng, Qing and Jur, Jesse S. and Devine, Christina K. and Lee, Kyoungmi and Parsons, Gregory N.}, year={2011}, month={Aug}, pages={3476–3485} } @article{hyde_scarel_spagnola_peng_lee_gong_roberts_roth_hanson_devine_et al._2010, title={Atomic Layer Deposition and Abrupt Wetting Transitions on Nonwoven Polypropylene and Woven Cotton Fabrics}, volume={26}, ISSN={["0743-7463"]}, url={http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000274342200056&KeyUID=WOS:000274342200056}, DOI={10.1021/la902830d}, abstractNote={Atomic layer deposition (ALD) of aluminum oxide on nonwoven polypropylene and woven cotton fabric materials can be used to transform and control fiber surface wetting properties. Infrared analysis shows that ALD can produce a uniform coating throughout the nonwoven polypropylene fiber matrix, and the amount of coating can be controlled by the number of ALD cycles. Upon coating by ALD aluminum oxide, nonwetting hydrophobic polypropylene fibers transition to either a metastable hydrophobic or a fully wetting hydrophilic state, consistent with well-known Cassie-Baxter and Wenzel models of surface wetting of roughened surfaces. The observed nonwetting/wetting transition depends on ALD process variables such as the number of ALD coating cycles and deposition temperature. Cotton fabrics coated with ALD aluminum oxide at moderate temperatures were also observed to transition from a natural wetting state to a metastable hydrophobic state and back to wetting depending on the number of ALD cycles. The transitions on cotton appear to be less sensitive to deposition temperature. The results provide insight into the effect of ALD film growth mechanisms on hydrophobic and hydrophilic polymers and fibrous structures. The ability to adjust and control surface energy, surface reactivity, and wettability of polymer and natural fiber systems using atomic layer deposition may enable a wide range of new applications for functional fiber-based systems.}, number={4}, journal={LANGMUIR}, author={Hyde, G. Kevin and Scarel, Giovanna and Spagnola, Joseph C. and Peng, Qing and Lee, Kyoungmi and Gong, Bo and Roberts, Kim G. and Roth, Kelly M. and Hanson, Christopher A. and Devine, Christina K. and et al.}, year={2010}, month={Feb}, pages={2550–2558} }