Works (4)

Updated: August 18th, 2023 21:18

2021 journal article

Enzyme Complexes of Ptr4CL and PtrHCT Modulate Co-enzyme A Ligation of Hydroxycinnamic Acids for Monolignol Biosynthesis in Populus trichocarpa

FRONTIERS IN PLANT SCIENCE, 12.

By: C. Lin n, Y. Sun*, J. Song n, H. Chen n, R. Shi n, C. Yang n, J. Liu n, S. Tunlaya-Anukit n ...

author keywords: protein interaction; monolignol biosynthesis; wood formation; Populus trichocarpa; BiFC; metabolic flux
TL;DR: It is proposed that Ptr4CL/PtrHCT complexes modulate the metabolic flux of CoA ligation for monolignol biosynthesis during wood formation in P. trichocarpa. (via Semantic Scholar)
Sources: Web Of Science, NC State University Libraries, ORCID
Added: November 8, 2021

2015 journal article

4-Coumaroyl and Caffeoyl Shikimic Acids Inhibit 4-Coumaric Acid: Coenzyme A Ligases and Modulate Metabolic Flux for 3-Hydroxylation in Monolignol Biosynthesis of Populus trichocarpa

MOLECULAR PLANT, 8(1), 176–187.

By: C. Lin n, J. Wang n, Q. Li*, H. Chen n, J. Liu n, P. Loziuk n, J. Song n, C. Williams n ...

Contributors: C. Lin n, J. Wang n, Q. Li*, H. Chen n, J. Liu n, P. Loziuk n, J. Song n, C. Williams n ...

author keywords: monolignol biosynthesis; Populus trichocarpa; metabolic flux; reaction and inhibition kinetics; LC-MS/MS; 4-coumaroyl and caffeoyl shikimic acids
MeSH headings : Acyl Coenzyme A / metabolism; Coenzyme A Ligases / metabolism; Coumaric Acids / metabolism; Coumaric Acids / pharmacology; Hydroxylation / drug effects; Plant Proteins / metabolism; Populus / drug effects; Populus / enzymology; Populus / metabolism; Propionates; Shikimic Acid / pharmacology
TL;DR: 4-coumaroyl and caffeoyl shikimic acids are inhibitors of Ptr4CL3 and Ptr 4CL5, which can reduce lignin content in a number of plant species and play significant regulatory roles when these inhibitors accumulate. (via Semantic Scholar)
Sources: Web Of Science, ORCID, NC State University Libraries
Added: August 6, 2018

2015 journal article

Elucidation of Xylem-Specific Transcription Factors and Absolute Quantification of Enzymes Regulating Cellulose Biosynthesis in Populus trichocarpa

JOURNAL OF PROTEOME RESEARCH, 14(10), 4158–4168.

Contributors: P. Loziuk n, J. Parker n, W. Li n, C. Lin n, J. Wang n, Q. Li*, R. Sederoff n, V. Chiang n, D. Muddiman n

author keywords: shotgun discovery proteomics; absolute quantification; PC-IDMS; cellulose biosynthesis; transcription factor; targeted mass spectrometiry; SRM
MeSH headings : Carbohydrate Metabolism; Cellulose / biosynthesis; Cellulose / genetics; Chromatography, Liquid; Gene Expression Regulation, Plant; Molecular Sequence Annotation; Plant Proteins / genetics; Plant Proteins / isolation & purification; Plant Proteins / metabolism; Populus / genetics; Populus / metabolism; Proteome / genetics; Proteome / isolation & purification; Proteome / metabolism; Proteomics; Tandem Mass Spectrometry; Transcription Factors / genetics; Transcription Factors / isolation & purification; Transcription Factors / metabolism; Wood / chemistry; Wood / metabolism; Xylem / genetics; Xylem / metabolism
TL;DR: The study described herein sought to identify the proteins directly involved in cellulose biosynthesis during wood formation in Populus trichocarpa along with known xylem-specific transcription factors involved in regulating these key proteins. (via Semantic Scholar)
UN Sustainable Development Goal Categories
9. Industry, Innovation and Infrastructure (OpenAlex)
Sources: Web Of Science, ORCID, NC State University Libraries
Added: August 6, 2018

2014 journal article

A simple improved-throughput xylem protoplast system for studying wood formation

NATURE PROTOCOLS, 9(9), 2194–2205.

By: Y. Lin n, W. Li n, H. Chen n, Q. Li n, Y. Sun*, R. Shi n, C. Lin n, J. Wang n ...

Contributors: Y. Lin n, W. Li n, H. Chen n, Q. Li n, Y. Sun*, R. Shi n, C. Lin n, J. Wang n ...

MeSH headings : Cell Wall / metabolism; Gene Expression Regulation, Plant / genetics; Gene Regulatory Networks / genetics; Green Fluorescent Proteins; Populus / cytology; Populus / growth & development; Protoplasts / metabolism; Transfection / methods; Wood / cytology; Wood / growth & development; Xylem / chemistry
TL;DR: A protocol for the isolation and transfection of protoplasts from wood-forming tissue, the stem-differentiating xylem (SDX), in the model woody plant Populus trichocarpa is presented. (via Semantic Scholar)
Sources: Web Of Science, ORCID
Added: August 6, 2018

Citation Index includes data from a number of different sources. If you have questions about the sources of data in the Citation Index or need a set of data which is free to re-distribute, please contact us.

Certain data included herein are derived from the Web of Science© and InCites© (2024) of Clarivate Analytics. All rights reserved. You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.