@article{bedjou p. n'dri_wipf_saric_fodjo_raso_utzinger_mueller_mouhamadou_2023, title={Species composition and insecticide resistance in malaria vectors in Ellibou, southern Cote d'Ivoire and first finding of Anopheles arabiensis in Cote d'Ivoire}, volume={22}, ISSN={["1475-2875"]}, DOI={10.1186/s12936-023-04456-y}, abstractNote={Abstract Background Knowing the species composition and insecticide resistance status of the target vector population is important to guide malaria vector control. The aim of this study was to characterize the malaria vector population in terms of species composition, insecticide susceptibility status and potential underlying resistance mechanisms in Ellibou, southern Côte d’Ivoire. Methods A 1-year longitudinal entomological survey was conducted using light traps and pyrethroid spray catches to sample adult mosquitoes in combination with larval sampling. The susceptibility status of Anopheles gambiae sensu lato (s.l.) to bendiocarb, deltamethrin, DDT and malathion was assessed using the World Health Organization insecticide susceptibility test. Additionally, An. gambiae specimens were screened for knockdown (kdr) and acetylcholineesterase (ace1) target site resistance alleles, and the expression levels of eight metabolic resistance genes, including seven cytochrome P450 monooxygenases (P450s) and one glutathione S-transferase (GST), measured with reverse transcription quantitative real-time polymerase chain reaction (qPCR). Results Overall, 2383 adult mosquitoes from 12 different taxa were collected with Culex quinquefasciatus and An. gambiae being the predominant taxa. Molecular identification of An. gambiae s.l. revealed the presence of Anopheles arabiensis, Anopheles coluzzii, An. gambiae sensu stricto (s.s.) and Anopheles coluzzii/An. gambiae s.s. hybrids. Anopheles gambiae mosquitoes were resistant to all insecticides except malathion. PCR diagnostics revealed the presence of ace1-G280S and the kdr L995F, L995S and N1570Y target-site mutations. Additionally, several genes were upregulated, including five P450s (i.e., CYP6P3, CYP6M2, CYP9K1, CYP6Z1, CYP6P1) and GSTE2. Conclusion This is the first documented presence of An. arabiensis in Côte d’Ivoire. Its detection – together with a recent finding further north of the country – confirms its existence in the country, which is an early warning sign, as An. arabiensis shows a different biology than the currently documented malaria vectors. Because the local An. gambiae population was still susceptible to malathion, upregulation of P450s, conferring insecticide resistance to pyrethroids, together with the presence of ace1, suggest negative cross-resistance. Therefore, organophosphates could be an alternative insecticide class for indoor residual spraying in the Ellibou area, while additional tools against the outdoor biting An. arabiensis will have to be considered. }, number={1}, journal={MALARIA JOURNAL}, author={Bedjou P. N'Dri and Wipf, Nadja C. and Saric, Jasmina and Fodjo, Behi K. and Raso, Giovanna and Utzinger, Juerg and Mueller, Pie and Mouhamadou, Chouaibou S.}, year={2023}, month={Mar} } @article{chen_ponnusamy_mouhamadou_fodjo_sadia_affoue_deguenon_roe_2022, title={Internal and external microbiota of home-caught Anopheles coluzzii (Diptera: Culicidae) from Cote d'Ivoire, Africa: Mosquitoes are filthy}, volume={17}, ISSN={["1932-6203"]}, url={https://doi.org/10.1371/journal.pone.0278912}, DOI={10.1371/journal.pone.0278912}, abstractNote={Over the past 10 years, studies using high-throughput 16S rRNA gene sequencing have shown that mosquitoes harbor diverse bacterial communities in their digestive system. However, no previous research has examined the total bacteria community inside versus outside of mosquitoes and whether bacteria found on the outside could represent a potential health threat through mechanical transfer. We examined the bacterial community of the external surface and internal body of female Anopheles coluzzii adults collected from homes in Côte d’Ivoire, Africa, by Illumina sequencing of the V3 to V4 region of 16S rRNA gene. Anopheles coluzzii is in the Anopheles gambiae sensu lato (s.l.) species complex and important in the transmission of malaria. The total 16S rRNA reads were assigned to 34 phyla, 73 orders, 325 families, and 700 genera. At the genus level, the most abundant genera inside and outside combined were Bacillus, Staphylococcus, Enterobacter, Corynebacterium, Kocuria, Providencia, and Sphingomonas. Mosquitoes had a greater diversity of bacterial taxa internally compared to the outside. The internal bacterial communities were similar between homes, while the external body samples were significantly different between homes. The bacteria on the external body were associated with plants, human and animal skin, and human and animal infections. Internally, Rickettsia bellii and Rickettsia typhi were found, potentially of importance, since this genus is associated with human diseases. Based on these findings, further research is warranted to assess the potential mechanical transmission of bacteria by mosquitoes moving into homes and the importance of the internal mosquito microbiota in human health.}, number={12}, journal={PLOS ONE}, author={Chen, Kaiying and Ponnusamy, Loganathan and Mouhamadou, Chouaibou S. and Fodjo, Behi Kouadio and Sadia, Gba Christabelle and Affoue, France Paraudie Kouadio and Deguenon, Jean M. and Roe, R. Michael}, editor={Terenius, OlleEditor}, year={2022}, month={Dec} } @article{chen_deguenon_cave_denning_reiskind_watson_stewart_gittins_zheng_liu_et al._2021, title={New thinking for filth fly control: residual, non-chemical wall spray from volcanic glass}, volume={35}, ISSN={["1365-2915"]}, DOI={10.1111/mve.12521}, abstractNote={AbstractFilth flies are of medical and veterinary importance because of the transfer of disease organisms to animals and humans. The traditional control methods include the use of chemical insecticides. A novel mechanical insecticide made from volcanic glass and originally developed to control mosquitoes (Imergard™ WP; ImG) was investigated for control of adult grey flesh flies, Sarcophaga bullata (Parker), secondary screwworms, Cochliomyia macellaria (F.), and house flies, Musca domestica L. In a modified WHO cone test device, the time to 50% mortality (LT50) when applied at 5 g/m2 (tested at 30 °C and 50% relative humidity (rH)) was 7.1, 4.3 and 3.2 h, respectively. When knockdown was included, the LT50s were 5.5, 1.5 and 2.8 h, respectively. Application rates of 1.25 and greater g/m2 had the shortest LT50s. The time to the LT50 increased for M. domestica as rH increased, but ImG was still active at the highest rH tested of 70%. Scanning electron micrographs showed ImG was present on all body parts, unlike that for mosquitoes where it was found mostly on the lower legs. These first studies on the use of Imergard WP against flies suggest this could be an alternative method for filth fly control.}, number={3}, journal={MEDICAL AND VETERINARY ENTOMOLOGY}, author={Chen, K. and Deguenon, J. M. and Cave, G. and Denning, S. S. and Reiskind, M. H. and Watson, D. W. and Stewart, D. A. and Gittins, D. and Zheng, Y. and Liu, X. and et al.}, year={2021}, month={Sep}, pages={451–461} } @article{bedjou p. n'dri_heitz-tokpa_chouaibou_raso_koffi_coulibaly_yapi_mueller_utzinger_2020, title={Use of Insecticides in Agriculture and the Prevention of Vector-Borne Diseases: Population Knowledge, Attitudes, Practices and Beliefs in Elibou, South Cote d'Ivoire}, volume={5}, ISSN={["2414-6366"]}, DOI={10.3390/tropicalmed5010036}, abstractNote={People’s knowledge, attitudes, practices and beliefs (KAPB) pertaining to malaria are generally well described. However, little is known about population knowledge and awareness of insecticide resistance in malaria vectors. The aim of this study was to investigate KAPB related to insecticide resistance in malaria vectors due to the use of insecticides in agriculture and the prevention against mosquitoes. In mid-2017, we carried out a cross-sectional survey in Elibou, South Côte d’Ivoire, employing a mixed methods approach. Quantitative data were obtained with a questionnaire addressed to household heads. Interviews were conducted with key opinion leaders, including village chiefs, traditional healers, heads of health centres and pesticide sellers. Focus group discussions were conducted with youth and elders. A total of 203 individuals participated in the questionnaire survey (132 males, 65%). We found that people had good knowledge about malaria and mosquitoes transmitting the disease, while they felt that preventing measures were ineffective. Pesticides were intensively used by farmers, mainly during the rainy season. Among the pesticides used, insecticides and herbicides were most commonly used. While there was poor knowledge about resistance, the interviewees stated that insecticides were not killing the mosquitoes anymore. The main reason given was that insecticides were diluted by the manufacturers as a marketing strategy to sell larger quantities. More than a third of the farmers used agricultural pesticides for domestic purposes to kill weeds or mosquitoes. We observed a misuse of pesticides among farmers, explained by the lack of specific training. In the community, long-lasting insecticidal nets were the most common preventive measure against malaria, followed by mosquito coils and insecticide sprays. The interviewees felt that the most effective way of dealing with insecticide resistance was to combine at least two preventive measures. In conclusion, population attitudes and practices related to insecticides used in agriculture and the prevention against mosquitoes could lead to resistance in malaria vectors, while people’s knowledge about insecticide resistance was limited. There is a need to raise awareness in communities about the presence of resistance in malaria vectors and to involve them in resistance management.}, number={1}, journal={TROPICAL MEDICINE AND INFECTIOUS DISEASE}, author={Bedjou P. N'Dri and Heitz-Tokpa, Kathrin and Chouaibou, Mouhamadou and Raso, Giovanna and Koffi, Amoin J. and Coulibaly, Jean T. and Yapi, Richard B. and Mueller, Pie and Utzinger, Juerg}, year={2020}, month={Mar} } @article{mouhamadou_souza_fodjo_zoh_bli_koudou_2019, title={Evidence of insecticide resistance selection in wild Anopheles coluzzii mosquitoes due to agricultural pesticide use}, volume={8}, ISSN={["2049-9957"]}, DOI={10.1186/s40249-019-0572-2}, abstractNote={The wetlands used for some agricultural activities constitute productive breeding sites for many mosquito species. Thus, the agricultural use of insecticide targeting other pests may select for insecticide resistance in malaria mosquitoes. The purpose of this study is to clarify some knowledge gaps on the role of agrochemicals in the development of insecticide resistance in malaria vectors is of utmost importance for vector control. Using the CDC bottle test and the log-probit analysis, we investigated for the first time the resistance levels of Anopheles coluzzii mosquitoes to neonicotinoids, insecticides used exclusively for crop protection in Côte d’Ivoire. The study was conducted in two agricultural regions (Tiassale and Gagnoa) and one non-agricultural region (Vitre) between June and August 2017 using clothianidin, acetamiprid and imidacloprid. Mosquito populations from Tiassale and Gagnoa (agricultural settings) were determined to be resistant to acetamiprid with mortality rates being < 85% at 24 h post-exposure. In Vitre (non-agricultural area) however, the mosquito population was susceptible to acetamiprid. In all three localities, mosquito populations were resistant to imidacloprid (mortality rates were 60% in Vitre, 37% in Tiassale, and 13% in Gagnoa) and completely susceptible to clothianidin (100% mortality). An. coluzzii represented 100% of mosquito collected in Gagnoa, 86% in Tiassale and 96% in Vitre. This study provides strong evidence that agricultural use of insecticides can cause insecticide resistance in malaria vector populations. Insecticide resistance driven by agrochemical usage should be considered when vector control strategies are developed.}, journal={INFECTIOUS DISEASES OF POVERTY}, author={Mouhamadou, Chouaibou Seidou and Souza, Sarah Souline and Fodjo, Behi Kouadio and Zoh, Marius Gonse and Bli, Nestor Kesse and Koudou, Benjamin Guibehi}, year={2019}, month={Jul} }