@article{schaaf_polkoff_carter_stewart_sheahan_freund_ginzel_snyder_roper_piedrahita_et al._2023, title={A LGR5 reporter pig model closely resembles human intestine for improved study of stem cells in disease}, volume={37}, ISSN={["1530-6860"]}, DOI={10.1096/fj.202300223R}, abstractNote={Abstract}, number={6}, journal={FASEB JOURNAL}, author={Schaaf, Cecilia R. and Polkoff, Kathryn M. and Carter, Amber and Stewart, Amy S. and Sheahan, Breanna and Freund, John and Ginzel, Joshua and Snyder, Joshua C. and Roper, Jatin and Piedrahita, Jorge A. and et al.}, year={2023}, month={Jun} } @article{veerasammy_gonzalez_báez‐ramos_schaaf_stewart_ludwig_mckinney‐aguirre_freund_robertson_gonzalez_2023, title={Changes in equine intestinal stem/progenitor cell number at resection margins in cases of small intestinal strangulation}, volume={55}, ISSN={0425-1644 2042-3306}, url={http://dx.doi.org/10.1111/evj.13927}, DOI={10.1111/evj.13927}, abstractNote={Abstract}, number={6}, journal={Equine Veterinary Journal}, publisher={Wiley}, author={Veerasammy, Brittany and Gonzalez, Gabriel and Báez‐Ramos, Patricia and Schaaf, Cecilia R. and Stewart, Amy Stieler and Ludwig, Elsa K. and McKinney‐Aguirre, Caroline and Freund, John and Robertson, James and Gonzalez, Liara M.}, year={2023}, month={Feb}, pages={995–1002} } @article{ludwig_abraham_schaaf_mckinney_freund_stewart_veerasammy_thomas_cardona_garman_et al._2023, title={Comparison of the effects of normothermic machine perfusion and cold storage preservation on porcine intestinal allograft regenerative potential and viability}, volume={24}, ISSN={1600-6135}, url={http://dx.doi.org/10.1016/j.ajt.2023.10.026}, DOI={10.1016/j.ajt.2023.10.026}, abstractNote={

Abstract

Intestinal transplantation (IT) is the final treatment option for intestinal failure. Static cold storage (CS) is the standard preservation method used for intestinal allografts. However, CS and subsequent transplantation induce ischemia-reperfusion injury (IRI). Severe IRI impairs epithelial barrier function, including loss of intestinal stem cells (ISC), critical to epithelial regeneration. Normothermic machine perfusion (NMP) preservation of kidney and liver allografts minimizes CS-associated IRI; however, it has not been used clinically for IT. We hypothesized that intestine NMP would induce less epithelial injury and better protect the intestine's regenerative ability when compared with CS. Full-length porcine jejunum and ileum were procured, stored at 4 °C, or perfused at 34 °C for 6 hours (T6), and transplanted. Histology was assessed following procurement (T0), T6, and 1 hour after reperfusion. Real-time quantitative reverse transcription polymerase chain reaction, immunofluorescence, and crypt culture measured ISC viability and proliferative potential. A greater number of NMP-preserved intestine recipients survived posttransplant, which correlated with significantly decreased tissue injury following 1-hour reperfusion in NMP compared with CS samples. Additionally, ISC gene expression, spheroid area, and cellular proliferation were significantly increased in NMP-T6 compared with CS-T6 intestine. NMP appears to reduce IRI and improve graft regeneration with improved ISC viability and proliferation.}, number={4}, journal={American Journal of Transplantation}, publisher={Elsevier BV}, author={Ludwig, Elsa K. and Abraham, Nader and Schaaf, Cecilia R. and McKinney, Caroline A. and Freund, John and Stewart, Amy S. and Veerasammy, Brittany A. and Thomas, Mallory and Cardona, Diana M. and Garman, Katherine and et al.}, year={2023}, month={Oct}, pages={564–576} } @article{stewart_schaaf_veerasammy_freund_gonzalez_2022, title={Culture of equine intestinal epithelial stem cells after delayed tissue storage for future applications}, volume={18}, ISSN={["1746-6148"]}, DOI={10.1186/s12917-022-03552-6}, abstractNote={Abstract}, number={1}, journal={BMC VETERINARY RESEARCH}, author={Stewart, Amy Stieler and Schaaf, Cecilia R. and Veerasammy, Brittany and Freund, John M. and Gonzalez, Liara M.}, year={2022}, month={Dec} } @article{abraham_ludwig_schaaf_veerasammy_stewart_mckinney_freund_brassil_samy_gao_et al._2022, title={Orthotopic Transplantation of the Full-length Porcine Intestine After Normothermic Machine Perfusion}, volume={8}, ISSN={2373-8731}, url={http://dx.doi.org/10.1097/TXD.0000000000001390}, DOI={10.1097/TXD.0000000000001390}, abstractNote={ Background. Successful intestinal transplantation is currently hindered by graft injury that occurs during procurement and storage, which contributes to postoperative sepsis and allograft rejection. Improved graft preservation may expand transplantable graft numbers and enhance posttransplant outcomes. Superior transplant outcomes have recently been demonstrated in clinical trials using machine perfusion to preserve the liver. We hypothesized that machine perfusion preservation of intestinal allografts could be achieved and allow for transplantation in a porcine model. }, number={11}, journal={Transplantation Direct}, publisher={Ovid Technologies (Wolters Kluwer Health)}, author={Abraham, Nader and Ludwig, Elsa K. and Schaaf, Cecilia R. and Veerasammy, Brittany and Stewart, Amy S. and McKinney, Caroline and Freund, John and Brassil, John and Samy, Kannan P. and Gao, Qimeng and et al.}, year={2022}, month={Oct}, pages={e1390} } @misc{schaaf_gonzalez_2022, title={Use of Translational, Genetically Modified Porcine Models to Ultimately Improve Intestinal Disease Treatment}, volume={9}, ISSN={["2297-1769"]}, DOI={10.3389/fvets.2022.878952}, abstractNote={For both human and veterinary patients, non-infectious intestinal disease is a major cause of morbidity and mortality. To improve treatment of intestinal disease, large animal models are increasingly recognized as critical tools to translate the basic science discoveries made in rodent models into clinical application. Large animal intestinal models, particularly porcine, more closely resemble human anatomy, physiology, and disease pathogenesis; these features make them critical to the pre-clinical study of intestinal disease treatments. Previously, large animal model use has been somewhat precluded by the lack of genetically altered large animals to mechanistically investigate non-infectious intestinal diseases such as colorectal cancer, cystic fibrosis, and ischemia-reperfusion injury. However, recent advances and increased availability of gene editing technologies has led to both novel use of large animal models in clinically relevant intestinal disease research and improved testing of potential therapeutics for these diseases.}, journal={FRONTIERS IN VETERINARY SCIENCE}, author={Schaaf, Cecilia R. and Gonzalez, Liara M.}, year={2022}, month={May} } @article{stewart_schaaf_luff_freund_becker_tufts_robertson_gonzalez_2021, title={HOPX+ injury-resistant intestinal stem cells drive epithelial recovery after severe intestinal ischemia}, volume={321}, ISSN={["1522-1547"]}, url={https://doi.org/10.1152/ajpgi.00165.2021}, DOI={10.1152/ajpgi.00165.2021}, abstractNote={ This paper supports that rISCs are resistant to ischemic injury and likely an important source of cellular renewal following near-complete epithelial loss. Furthermore, we have evidence that HOPX controls ISC activity state and may be a critical signaling pathway during ISC-mediated repair. Finally, we use multiple novel methods to evaluate ISCs in a translationally relevant large animal model of severe intestinal injury and provide evidence for the potential role of rISCs as therapeutic targets. }, number={5}, journal={AMERICAN JOURNAL OF PHYSIOLOGY-GASTROINTESTINAL AND LIVER PHYSIOLOGY}, publisher={American Physiological Society}, author={Stewart, Amy Stieler and Schaaf, Cecilia Renee and Luff, Jennifer A. and Freund, John M. and Becker, Thomas C. and Tufts, Sara R. and Robertson, James B. and Gonzalez, Liara M.}, year={2021}, month={Oct}, pages={G588–G602} }