@article{watts_ross_jones_2015, title={Diel and life-history characteristics of personality: consistency versus flexibility in relation to ecological change}, volume={101}, ISSN={["1095-8282"]}, DOI={10.1016/j.anbehav.2014.12.020}, abstractNote={Despite the potential benefits of modifying behaviour according to changing ecological conditions, many populations comprise individuals that differ consistently in behaviour across situations, contexts and points in time (i.e. individuals show personality). If personalities are adaptive, the balance between consistency and flexibility of behavioural traits should reflect the ability of individuals to detect and respond to changing conditions in an appropriate and timely manner and, thus, depend upon the pace and predictability of changing conditions. We investigated the balance between individual consistency and flexibility in the subsocial spider Anelosimus studiosus by assaying boldness across the diel cycle and correlating these data with patterns of prey and threat abundance in the natural habitat. We found significant diel flexibility in boldness correlating with drastic and predictable changes in prey availability. Moreover, the strength of within-individual flexibility in boldness was comparable to the strength of rank-order consistency among individuals. We also found evidence that mean boldness level and among-individual variation in boldness are correlated with reproductive status. These data emphasize the interplay between behavioural consistency and flexibility and suggest that temporal characteristics of ecological conditions may be vital in assessing the strength, stability and adaptive value of animal personalities.}, journal={ANIMAL BEHAVIOUR}, author={Watts, J. Colton and Ross, Chelsea R. and Jones, Thomas C.}, year={2015}, month={Mar}, pages={43–49} } @article{banks_banks_link_rosenheim_ross_tillman_2015, title={Model comparison tests to determine data information content}, volume={43}, ISSN={["0893-9659"]}, DOI={10.1016/j.aml.2014.11.002}, abstractNote={In the context of inverse or parameter estimation problems we demonstrate the use of statistically based model comparison tests in several examples of practical interest. In these examples we are interested in questions related to information content of a particular given data set and whether the data will support a more complicated model to describe it. In the first example we compare fits for several different models to describe simple decay in a size histogram for aggregates in amyloid fibril formation. In a second example we investigate whether the information content in data sets for the pest Lygus hesperus in cotton fields as it is currently collected is sufficient to support a model in which one distinguishes between nymphs and adults. Finally in a third example with data for patients having undergone an organ transplant, we question whether the data content is sufficient to estimate more than 5 of the fundamental parameters in a particular dynamic model.}, journal={APPLIED MATHEMATICS LETTERS}, author={Banks, H. T. and Banks, J. E. and Link, Kathryn and Rosenheim, J. A. and Ross, Chelsea and Tillman, K. A.}, year={2015}, month={May}, pages={10–18} } @article{adoteye_banks_cross_eytcheson_flores_leblanc_nguyen_ross_smith_stemkovski_et al._2015, title={Statistical validation of structured population models for Daphnia magna}, volume={266}, ISSN={0025-5564}, url={http://dx.doi.org/10.1016/j.mbs.2015.06.003}, DOI={10.1016/j.mbs.2015.06.003}, abstractNote={In this study we use statistical validation techniques to verify density-dependent mechanisms hypothesized for populations of Daphnia magna. We develop structured population models that exemplify specific mechanisms and use multi-scale experimental data in order to test their importance. We show that fecundity and survival rates are affected by both time-varying density-independent factors, such as age, and density-dependent factors, such as competition. We perform uncertainty analysis and show that our parameters are estimated with a high degree of confidence. Furthermore, we perform a sensitivity analysis to understand how changes in fecundity and survival rates affect population size and age-structure.}, journal={Mathematical Biosciences}, publisher={Elsevier BV}, author={Adoteye, Kaska and Banks, H.T. and Cross, Karissa and Eytcheson, Stephanie and Flores, Kevin B. and LeBlanc, Gerald A. and Nguyen, Timothy and Ross, Chelsea and Smith, Emmaline and Stemkovski, Michael and et al.}, year={2015}, month={Aug}, pages={73–84} }