@article{troxell_petri_daron_pereira_mendoza_hassan_koci_2015, title={Poultry Body Temperature Contributes to Invasion Control through Reduced Expression of Salmonella Pathogenicity Island 1 Genes in Salmonella enterica Serovars Typhimurium and Enteritidis}, volume={81}, ISSN={0099-2240 1098-5336}, url={http://dx.doi.org/10.1128/AEM.02622-15}, DOI={10.1128/aem.02622-15}, abstractNote={ABSTRACT Salmonella enterica serovars Typhimurium ( S . Typhimurium) and Enteritidis ( S . Enteritidis) are foodborne pathogens, and outbreaks are often associated with poultry products. Chickens are typically asymptomatic when colonized by these serovars; however, the factors contributing to this observation are uncharacterized. Whereas symptomatic mammals have a body temperature between 37°C and 39°C, chickens have a body temperature of 41°C to 42°C. Here, in vivo experiments using chicks demonstrated that numbers of viable S . Typhimurium or S . Enteritidis bacteria within the liver and spleen organ sites were ≥4 orders of magnitude lower than those within the ceca. When similar doses of S . Typhimurium or S . Enteritidis were given to C3H/HeN mice, the ratio of the intestinal concentration to the liver/spleen concentration was 1:1. In the avian host, this suggested poor survival within these tissues or a reduced capacity to traverse the host epithelial layer and reach liver/spleen sites or both. Salmonella pathogenicity island 1 (SPI-1) promotes localization to liver/spleen tissues through invasion of the epithelial cell layer. Following in vitro growth at 42°C, SPI-1 genes sipC , invF , and hilA and the SPI-1 rtsA activator were downregulated compared to expression at 37°C. Overexpression of the hilA activators fur , fliZ , and hilD was capable of inducing hilA-lacZ at 37°C but not at 42°C despite the presence of similar levels of protein at the two temperatures. In contrast, overexpression of either hilC or rtsA was capable of inducing hilA and sipC at 42°C. These data indicate that physiological parameters of the poultry host, such as body temperature, have a role in modulating expression of virulence. }, number={23}, journal={Applied and Environmental Microbiology}, publisher={American Society for Microbiology}, author={Troxell, Bryan and Petri, Nicholas and Daron, Caitlyn and Pereira, Rafaela and Mendoza, Mary and Hassan, Hosni M. and Koci, Matthew D.}, editor={Elkins, C. A.Editor}, year={2015}, month={Sep}, pages={8192–8201} }