@article{bing_straub_sulis_wang_adams_kelly_2022, title={

Plant biomass fermentation by the extreme thermophile Caldicellulosiruptor bescii for co-production of green hydrogen and acetone: Technoeconomic analysis

}, volume={348}, ISSN={["1873-2976"]}, url={http://europepmc.org/abstract/med/35093526}, DOI={10.1016/j.biortech.2022.126780}, abstractNote={A variety of chemical and biological processes have been proposed for conversion of sustainable low-cost feedstocks into industrial products. Here, a biorefinery concept is formulated, modeled, and analyzed in which a naturally (hemi)cellulolytic and extremely thermophilic bacterium, Caldicellulosiruptor bescii, is metabolically engineered to convert the carbohydrate content of lignocellulosic biomasses (i.e., soybean hulls, transgenic poplar) into green hydrogen and acetone. Experimental validation of C. bescii fermentative performance demonstrated 82% carbohydrate solubilization of soybean hulls and 55% for transgenic poplar. A detailed technical design, including equipment specifications, provides the basis for an economic analysis that establishes metabolic engineering targets. This robust industrial process leveraging metabolically engineered C. bescii yields 206 kg acetone and 25 kg H2 per metric ton of soybean hull, or 174 kg acetone and 21 kg H2 per metric ton transgenic poplar. Beyond this specific case, the model demonstrates industrial feasibility and economic advantages of thermophilic fermentation.}, journal={BIORESOURCE TECHNOLOGY}, author={Bing, Ryan G. and Straub, Christopher T. and Sulis, Daniel B. and Wang, Jack P. and Adams, Michel W. W. and Kelly, Robert M.}, year={2022}, month={Mar} } @article{straub_bing_otten_keller_zeldes_adams_kelly_2020, title={Metabolically engineeredCaldicellulosiruptor besciias a platform for producing acetone and hydrogen from lignocellulose}, volume={117}, ISSN={["1097-0290"]}, DOI={10.1002/bit.27529}, abstractNote={The production of volatile industrial chemicals utilizing metabolically engineered extreme thermophiles offers the potential for processes with simultaneous fermentation and product separation. An excellent target chemical for such a process is acetone (Tb = 56°C), ideally produced from lignocellulosic biomass. Caldicellulosiruptor bescii (Topt 78°C), an extremely thermophilic fermentative bacterium naturally capable of deconstructing and fermenting lignocellulose, was metabolically engineered to produce acetone. When the acetone pathway construct was integrated into a parent strain containing the bifunctional alcohol dehydrogenase from Clostridium thermocellum, acetone was produced at 9.1 mM (0.53 g/L), in addition to minimal ethanol 3.3 mM (0.15 g/L), along with net acetate consumption. This demonstrates that C. bescii can be engineered with balanced pathways in which renewable carbohydrate sources are converted to useful metabolites, primarily acetone and H2, without net production of its native fermentation products, acetate and lactate.}, number={12}, journal={BIOTECHNOLOGY AND BIOENGINEERING}, author={Straub, Christopher T. and Bing, Ryan G. and Otten, Jonathan K. and Keller, Lisa M. and Zeldes, Benjamin M. and Adams, Michael W. W. and Kelly, Robert M.}, year={2020}, month={Dec}, pages={3799–3808} } @article{straub_schut_otten_keller_adams_kelly_2020, title={Modification of the glycolytic pathway in Pyrococcus furiosus and the implications for metabolic engineering}, volume={24}, ISSN={["1433-4909"]}, DOI={10.1007/s00792-020-01172-2}, abstractNote={The key difference in the modified Embden-Meyerhof glycolytic pathway in hyperthermophilic Archaea, such as Pyrococcus furiosus, occurs at the conversion from glyceraldehyde-3-phosphate (GAP) to 3-phosphoglycerate (3-PG) where the typical intermediate 1,3-bisphosphoglycerate (1,3-BPG) is not present. The absence of the ATP-yielding step catalyzed by phosphoglycerate kinase (PGK) alters energy yield, redox energetics, and kinetics of carbohydrate metabolism. Either of the two enzymes, ferredoxin-dependent glyceraldehyde-3-phosphate ferredoxin oxidoreductase (GAPOR) or NADP + -dependent non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN), responsible for this "bypass" reaction, could be deleted individually without impacting viability, albeit with differences in native fermentation product profiles. Furthermore, P. furiosus was viable in the gluconeogenic direction (growth on pyruvate or peptides plus elemental sulfur) in a ΔgapnΔgapor strain. Ethanol was utilized as a proxy for potential heterologous products (e.g., isopropanol, butanol, fatty acids) that require reducing equivalents (e.g., NAD(P)H, reduced ferredoxin) generated from glycolysis. Insertion of a single gene encoding the thermostable NADPH-dependent primary alcohol dehydrogenase (adhA) (Tte_0696) from Caldanaerobacter subterraneus, resulted in a strain producing ethanol via the previously established aldehyde oxidoreductase (AOR) pathway. This strain demonstrated a high ratio of ethanol over acetate (> 8:1) at 80 °C and enabled ethanol production up to 85 °C, the highest temperature for bio-ethanol production reported to date.}, number={4}, journal={EXTREMOPHILES}, author={Straub, Christopher T. and Schut, Gerritt and Otten, Jonathan K. and Keller, Lisa M. and Adams, Michael W. W. and Kelly, Robert M.}, year={2020}, month={Jul}, pages={511–518} } @article{lee_crosby_rubinstein_laemthong_bing_straub_adams_kelly_2020, title={The biology and biotechnology of the genus Caldicellulosiruptor: recent developments in 'Caldi World'}, volume={24}, ISSN={["1433-4909"]}, url={https://doi.org/10.1007/s00792-019-01116-5}, DOI={10.1007/s00792-019-01116-5}, abstractNote={Terrestrial hot springs near neutral pH harbor extremely thermophilic bacteria from the genus Caldicellulosiruptor, which utilize the carbohydrates of lignocellulose for growth. These bacteria are technologically important because they produce novel, multi-domain glycoside hydrolases that are prolific at deconstructing microcrystalline cellulose and hemicelluloses found in plant biomass. Among other interesting features, Caldicellulosiruptor species have successfully adapted to bind specifically to lignocellulosic substrates via surface layer homology (SLH) domains associated with glycoside hydrolases and unique binding proteins (tāpirins) present only in these bacteria. They also utilize a parallel pathway for conversion of glyceraldehyde-3-phosphate into 3-phosphoglycerate via a ferredoxin-dependent oxidoreductase that is conserved across the genus. Advances in the genetic tools for Caldicellulosiruptor bescii, including the development of a high-temperature kanamycin-resistance marker and xylose-inducible promoter, have opened the door for metabolic engineering applications and some progress along these lines has been reported. While several species of Caldicellulosiruptor can readily deconstruct lignocellulose, improvements in the amount of carbohydrate released and in the production of bio-based chemicals are required to successfully realize the biotechnological potential of these organisms.}, number={1}, journal={EXTREMOPHILES}, author={Lee, Laura L. and Crosby, James R. and Rubinstein, Gabriel M. and Laemthong, Tunyaboon and Bing, Ryan G. and Straub, Christopher T. and Adams, Michael W. W. and Kelly, Robert M.}, year={2020}, month={Jan}, pages={1–15} } @article{straub_bing_wang_chiang_adams_kelly_2020, title={Use of the lignocellulose-degrading bacterium Caldicellulosiruptor bescii to assess recalcitrance and conversion of wild-type and transgenic poplar}, volume={13}, ISSN={["1754-6834"]}, url={http://europepmc.org/abstract/med/32180826}, DOI={10.1186/s13068-020-01675-2}, abstractNote={Biological conversion of lignocellulosic biomass is significantly hindered by feedstock recalcitrance, which is typically assessed through an enzymatic digestion assay, often preceded by a thermal and/or chemical pretreatment. Here, we assay 17 lines of unpretreated transgenic black cottonwood (Populus trichocarpa) utilizing a lignocellulose-degrading, metabolically engineered bacterium, Caldicellulosiruptor bescii. The poplar lines were assessed by incubation with an engineered C. bescii strain that solubilized and converted the hexose and pentose carbohydrates to ethanol and acetate. The resulting fermentation titer and biomass solubilization were then utilized as a measure of biomass recalcitrance and compared to data previously reported on the transgenic poplar samples.Of the 17 transgenic poplar lines examined with C. bescii, a wide variation in solubilization and fermentation titer was observed. While the wild type poplar control demonstrated relatively high recalcitrance with a total solubilization of only 20% and a fermentation titer of 7.3 mM, the transgenic lines resulted in solubilization ranging from 15 to 79% and fermentation titers from 6.8 to 29.6 mM. Additionally, a strong inverse correlation (R2 = 0.8) between conversion efficiency and lignin content was observed with lower lignin samples more easily converted and solubilized by C. bescii.Feedstock recalcitrance can be significantly reduced with transgenic plants, but finding the correct modification may require a large sample set to identify the most advantageous genetic modifications for the feedstock. Utilizing C. bescii as a screening assay for recalcitrance, poplar lines with down-regulation of coumarate 3-hydroxylase 3 (C3H3) resulted in the highest degrees of solubilization and conversion by C. bescii. One such line, with a growth phenotype similar to the wild-type, generated more than three times the fermentation products of the wild-type poplar control, suggesting that excellent digestibility can be achieved without compromising fitness of the tree.}, number={1}, journal={BIOTECHNOLOGY FOR BIOFUELS}, author={Straub, Christopher T. and Bing, Ryan G. and Wang, Jack P. and Chiang, Vincent L. and Adams, Michael W. W. and Kelly, Robert M.}, year={2020}, month={Mar} } @article{crosby_laemthong_lewis_straub_adams_kelly_2019, title={Extreme thermophiles as emerging metabolic engineering platforms}, volume={59}, ISSN={0958-1669}, url={http://dx.doi.org/10.1016/j.copbio.2019.02.006}, DOI={10.1016/j.copbio.2019.02.006}, abstractNote={Going forward, industrial biotechnology must consider non-model metabolic engineering platforms if it is to have maximal impact. This will include microorganisms that natively possess strategic physiological and metabolic features but lack either molecular genetic tools or such tools are rudimentary, requiring further development. If non-model platforms are successfully deployed, new avenues for production of fuels and chemicals from renewable feedstocks or waste materials will emerge. Here, the challenges and opportunities for extreme thermophiles as metabolic engineering platforms are discussed.}, journal={Current Opinion in Biotechnology}, publisher={Elsevier BV}, author={Crosby, James R and Laemthong, Tunyaboon and Lewis, April M and Straub, Christopher T and Adams, Michael WW and Kelly, Robert M}, year={2019}, month={Oct}, pages={55–64} } @article{straub_khatibi_otten_adams_kelly_2019, title={Lignocellulose solubilization and conversion by extremely thermophilic Caldicellulosiruptor bescii improves by maintaining metabolic activity}, volume={116}, ISSN={["1097-0290"]}, DOI={10.1002/bit.26993}, abstractNote={Abstract}, number={8}, journal={BIOTECHNOLOGY AND BIOENGINEERING}, author={Straub, Christopher T. and Khatibi, Piyum A. and Otten, Jonathan K. and Adams, Michael W. W. and Kelly, Robert M.}, year={2019}, month={Aug}, pages={1901–1908} } @article{straub_khatibi_wang_conway_williams-rhaesa_peszlen_chiang_adams_kelly_2019, title={Quantitative fermentation of unpretreated transgenic poplar by Caldicellulosiruptor bescii}, volume={10}, ISSN={["2041-1723"]}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-85070390326&partnerID=MN8TOARS}, DOI={10.1038/s41467-019-11376-6}, abstractNote={Abstract}, number={1}, journal={NATURE COMMUNICATIONS}, publisher={Springer Science and Business Media LLC}, author={Straub, Christopher T. and Khatibi, Piyum A. and Wang, Jack P. and Conway, Jonathan M. and Williams-Rhaesa, Amanda M. and Peszlen, Ilona M. and Chiang, Vincent L. and Adams, Michael W. W. and Kelly, Robert M.}, year={2019}, month={Aug} } @article{zeldes_straub_otten_adams_kelly_2018, title={A synthetic enzymatic pathway for extremely thermophilic acetone production based on the unexpectedly thermostable acetoacetate decarboxylase from Clostridium acetobutylicum}, volume={115}, ISSN={["1097-0290"]}, DOI={10.1002/bit.26829}, abstractNote={Abstract}, number={12}, journal={BIOTECHNOLOGY AND BIOENGINEERING}, author={Zeldes, Benjamin M. and Straub, Christopher T. and Otten, Jonathan K. and Adams, Michael W. W. and Kelly, Robert M.}, year={2018}, month={Dec}, pages={2951–2961} } @misc{straub_counts_nguyen_wu_zeldes_crosby_conway_otten_lipscomb_schut_et al._2018, title={Biotechnology of extremely thermophilic archaea}, volume={42}, ISSN={["1574-6976"]}, DOI={10.1093/femsre/fuy012}, abstractNote={Although the extremely thermophilic archaea (Topt ≥ 70°C) may be the most primitive extant forms of life, they have been studied to a limited extent relative to mesophilic microorganisms. Many of these organisms have unique biochemical and physiological characteristics with important biotechnological implications. These include methanogens that generate methane, fermentative anaerobes that produce hydrogen gas with high efficiency, and acidophiles that can mobilize base, precious and strategic metals from mineral ores. Extremely thermophilic archaea have also been a valuable source of thermoactive, thermostable biocatalysts, but their use as cellular systems has been limited because of the general lack of facile genetics tools. This situation has changed recently, however, thereby providing an important avenue for understanding their metabolic and physiological details and also opening up opportunities for metabolic engineering efforts. Along these lines, extremely thermophilic archaea have recently been engineered to produce a variety of alcohols and industrial chemicals, in some cases incorporating CO2 into the final product. There are barriers and challenges to these organisms reaching their full potential as industrial microorganisms but, if these can be overcome, a new dimension for biotechnology will be forthcoming that strategically exploits biology at high temperatures.}, number={5}, journal={FEMS MICROBIOLOGY REVIEWS}, author={Straub, Christopher T. and Counts, James A. and Nguyen, Diep M. N. and Wu, Chang-Hao and Zeldes, Benjamin M. and Crosby, James R. and Conway, Jonathan M. and Otten, Jonathan K. and Lipscomb, Gina L. and Schut, Gerrit J. and et al.}, year={2018}, month={Sep}, pages={543–578} } @article{zurawski_khatibi_akinosho_straub_compton_conway_lee_ragauskas_davison_adams_et al._2017, title={Bioavailability of Carbohydrate Content in Natural and Transgenic Switchgrasses for the Extreme Thermophile Caldicellulosiruptor bescii}, volume={83}, ISSN={["1098-5336"]}, DOI={10.1128/aem.00969-17}, abstractNote={ABSTRACT}, number={17}, journal={APPLIED AND ENVIRONMENTAL MICROBIOLOGY}, author={Zurawski, Jeffrey V. and Khatibi, Piyum A. and Akinosho, Hannah O. and Straub, Christopher T. and Compton, Scott H. and Conway, Jonathan M. and Lee, Laura L. and Ragauskas, Arthur J. and Davison, Brian H. and Adams, Michael W. W. and et al.}, year={2017}, month={Sep} } @misc{straub_zeldes_schut_adams_kelly_2017, title={Extremely thermophilic energy metabolisms: biotechnological prospects}, volume={45}, ISSN={["1879-0429"]}, DOI={10.1016/j.copbio.2017.02.016}, abstractNote={New strategies for metabolic engineering of extremely thermophilic microorganisms to produce bio-based fuels and chemicals could leverage pathways and physiological features resident in extreme thermophiles for improved outcomes. Furthermore, very recent advances in genetic tools for these microorganisms make it possible for them to serve as metabolic engineering hosts. Beyond providing a higher temperature alternative to mesophilic platforms, exploitation of strategic metabolic characteristics of high temperature microorganisms grants new opportunities for biotechnological products. This review considers recent developments in extreme thermophile biology as they relate to new horizons for energy biotechnology.}, journal={CURRENT OPINION IN BIOTECHNOLOGY}, author={Straub, Christopher T. and Zeldes, Benjamin M. and Schut, Gerrit J. and Adams, Michael W. W. and Kelly, Robert M.}, year={2017}, month={Jun}, pages={104–112} } @misc{counts_zeldes_lee_straub_adams_kelly_2017, title={Physiological, metabolic and biotechnological features of extremely thermophilic microorganisms}, volume={9}, ISSN={["1939-005X"]}, DOI={10.1002/wsbm.1377}, abstractNote={The current upper thermal limit for life as we know it is approximately 120°C. Microorganisms that grow optimally at temperatures of 75°C and above are usually referred to as ‘extreme thermophiles’ and include both bacteria and archaea. For over a century, there has been great scientific curiosity in the basic tenets that support life in thermal biotopes on earth and potentially on other solar bodies. Extreme thermophiles can be aerobes, anaerobes, autotrophs, heterotrophs, or chemolithotrophs, and are found in diverse environments including shallow marine fissures, deep sea hydrothermal vents, terrestrial hot springs—basically, anywhere there is hot water. Initial efforts to study extreme thermophiles faced challenges with their isolation from difficult to access locales, problems with their cultivation in laboratories, and lack of molecular tools. Fortunately, because of their relatively small genomes, many extreme thermophiles were among the first organisms to be sequenced, thereby opening up the application of systems biology‐based methods to probe their unique physiological, metabolic and biotechnological features. The bacterial genera Caldicellulosiruptor, Thermotoga and Thermus, and the archaea belonging to the orders Thermococcales and Sulfolobales, are among the most studied extreme thermophiles to date. The recent emergence of genetic tools for many of these organisms provides the opportunity to move beyond basic discovery and manipulation to biotechnologically relevant applications of metabolic engineering. WIREs Syst Biol Med 2017, 9:e1377. doi: 10.1002/wsbm.1377}, number={3}, journal={WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE}, author={Counts, James A. and Zeldes, Benjamin M. and Lee, Laura L. and Straub, Christopher T. and Adams, Michael W. W. and Kelly, Robert M.}, year={2017}, month={May} } @misc{zeldes_keller_loder_straub_adams_kelly_2015, title={Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals}, volume={6}, ISSN={["1664-302X"]}, DOI={10.3389/fmicb.2015.01209}, abstractNote={Enzymes from extremely thermophilic microorganisms have been of technological interest for some time because of their ability to catalyze reactions of industrial significance at elevated temperatures. Thermophilic enzymes are now routinely produced in recombinant mesophilic hosts for use as discrete biocatalysts. Genome and metagenome sequence data for extreme thermophiles provide useful information for putative biocatalysts for a wide range of biotransformations, albeit involving at most a few enzymatic steps. However, in the past several years, unprecedented progress has been made in establishing molecular genetics tools for extreme thermophiles to the point that the use of these microorganisms as metabolic engineering platforms has become possible. While in its early days, complex metabolic pathways have been altered or engineered into recombinant extreme thermophiles, such that the production of fuels and chemicals at elevated temperatures has become possible. Not only does this expand the thermal range for industrial biotechnology, it also potentially provides biodiverse options for specific biotransformations unique to these microorganisms. The list of extreme thermophiles growing optimally between 70 and 100°C with genetic toolkits currently available includes archaea and bacteria, aerobes and anaerobes, coming from genera such as Caldicellulosiruptor, Sulfolobus, Thermotoga, Thermococcus, and Pyrococcus. These organisms exhibit unusual and potentially useful native metabolic capabilities, including cellulose degradation, metal solubilization, and RuBisCO-free carbon fixation. Those looking to design a thermal bioprocess now have a host of potential candidates to choose from, each with its own advantages and challenges that will influence its appropriateness for specific applications. Here, the issues and opportunities for extremely thermophilic metabolic engineering platforms are considered with an eye toward potential technological advantages for high temperature industrial biotechnology.}, journal={FRONTIERS IN MICROBIOLOGY}, author={Zeldes, Benjamin M. and Keller, Matthew W. and Loder, Andrew J. and Straub, Christopher T. and Adams, Michael W. W. and Kelly, Robert M.}, year={2015}, month={Nov} }