@article{jones_andres_owen_dunne_contreras_cahoon_jennings_leon_everman_2023, title={Confirmation of a five-way herbicide-resistant Amaranthus tuberculatus population in North Carolina}, volume={7}, ISSN={["1365-3180"]}, url={https://doi.org/10.1111/wre.12590}, DOI={10.1111/wre.12590}, abstractNote={Abstract}, journal={WEED RESEARCH}, author={Jones, Eric A. L. and Andres, Ryan J. and Owen, Micheal D. K. and Dunne, Jeffrey C. and Contreras, Diego J. and Cahoon, Charles W. and Jennings, Katherine M. and Leon, Ramon G. and Everman, Wesley J.}, year={2023}, month={Jul} } @article{clapp_vann_cahoon_jordan_fisher_inman_2022, title={Evaluations of S-Metolachlor in flue-cured tobacco weed management programs}, volume={2}, ISSN={["1435-0645"]}, url={https://doi.org/10.1002/agj2.20984}, DOI={10.1002/agj2.20984}, abstractNote={Abstract}, journal={AGRONOMY JOURNAL}, author={Clapp, Andrew M. and Vann, Matthew C. and Cahoon, Charles W. and Jordan, David L. and Fisher, Loren R. and Inman, Matt D.}, year={2022}, month={Feb} } @article{joyner_cahoon_everman_collins_taylor_blythe_2022, title={HPPD-resistant cotton response to isoxaflutole applied preemergence and postemergence}, ISSN={["1550-2740"]}, DOI={10.1017/wet.2022.6}, abstractNote={Abstract}, journal={WEED TECHNOLOGY}, author={Joyner, Joshua D. and Cahoon, Charles W. and Everman, Wesley J. and Collins, Guy D. and Taylor, Zachary R. and Blythe, Andrew C.}, year={2022}, month={Feb} } @article{cahoon_jordan_tranel_york_riggins_seagroves_inman_everman_leon_2022, title={In-field assessment of EPSPS amplification on fitness cost in mixed glyphosate-resistant and glyphosate-sensitive populations of Palmer amaranth (Amaranthus palmeri)}, volume={10}, ISSN={["1550-2759"]}, url={https://doi.org/10.1017/wsc.2022.60}, DOI={10.1017/wsc.2022.60}, abstractNote={Abstract}, journal={WEED SCIENCE}, author={Cahoon, Charles W. and Jordan, David L. and Tranel, Patrick J. and York, Alan C. and Riggins, Chance and Seagroves, Richard and Inman, Matthew and Everman, Wesley and Leon, Ramon}, year={2022}, month={Oct} } @article{jones_cahoon_leon_everman_2022, title={Surveying stakeholder's perception of glufosinate and use in North Carolina}, volume={5}, ISSN={["1550-2740"]}, url={https://doi.org/10.1017/wet.2022.31}, DOI={10.1017/wet.2022.31}, abstractNote={Abstract}, journal={WEED TECHNOLOGY}, author={Jones, Eric A. L. and Cahoon, Charles W. and Leon, Ramon G. and Everman, Wesley J.}, year={2022}, month={May} } @article{jones_austin_dunne_cahoon_jennings_leon_everman_2022, title={Utilization of image-based spectral reflectance to detect herbicide resistance in glufosinate-resistant and glufosinate-susceptible plants: a proof of concept}, volume={12}, ISSN={["1550-2759"]}, url={https://doi.org/10.1017/wsc.2022.68}, DOI={10.1017/wsc.2022.68}, abstractNote={Abstract}, journal={WEED SCIENCE}, author={Jones, Eric A. L. and Austin, Robert and Dunne, Jeffrey C. and Cahoon, Charles W. and Jennings, Katherine M. and Leon, Ramon G. and Everman, Wesley J.}, year={2022}, month={Dec} } @article{askew_cahoon_york_flessner_langston_ferebee_2021, title={Comparison of 2,4-D, dicamba and halauxifen-methyl alone or in combination with glyphosate for preplant weed control}, volume={35}, ISSN={["1550-2740"]}, DOI={10.1017/wet.2020.83}, abstractNote={Abstract}, number={1}, journal={WEED TECHNOLOGY}, author={Askew, M. Carter and Cahoon, Charles W., Jr. and York, Alan C. and Flessner, Michael L. and Langston, David B., Jr. and Ferebee, J. Harrison}, year={2021}, month={Feb}, pages={93–98} } @article{mahoney_jordan_hare_leon_roma-burgos_vann_jennings_everman_cahoon_2021, title={Palmer Amaranth (Amaranthus palmeri) Growth and Seed Production When in Competition with Peanut and Other Crops in North Carolina}, volume={11}, ISSN={["2073-4395"]}, url={https://doi.org/10.3390/agronomy11091734}, DOI={10.3390/agronomy11091734}, abstractNote={Palmer amaranth (Amaranthus palmeri S. Wats.) is a highly competitive weed that can be difficult to manage in many cropping systems. Research to date has not quantified the growth and development of A. palmeri in a manner that allows direct comparisons across cropping systems. Research was conducted to compare the growth, development, and seed production of A. palmeri when competing with corn (Zea mays L.), cotton (Gossypium hirsutum L.), peanut (Arachis hypogaea L.), and soybean [Glycine max (L.) Merr.] when emerging with crops or emerging three weeks after crops emerge. Regardless of when A. palmeri emerged, seed production was greatest and similar in cotton and peanut and exceeded that of corn and soybean; seed production in soybean exceeded that of corn. However, seed production was approximately 10-fold greater when A. palmeri emerged with crops compared with emergence three weeks later. These results illustrate the importance of controlling weeds during the first three weeks of the season relative to contributions of A. palmeri to the weed seed bank and is the first report comparing seed production in presence of these crops in a manner allowing a statistical comparison of seed production and highlighting the importance of crop sequence for seed bank management.}, number={9}, journal={AGRONOMY-BASEL}, publisher={MDPI AG}, author={Mahoney, Denis J. and Jordan, David L. and Hare, Andrew T. and Leon, Ramon G. and Roma-Burgos, Nilda and Vann, Matthew C. and Jennings, Katherine M. and Everman, Wesley J. and Cahoon, Charles W.}, year={2021}, month={Sep} } @article{moore_jennings_monks_jordan_boyette_leon_mahoney_everman_cahoon_2021, title={Susceptibility of Palmer amaranth accessions in North Carolina to atrazine, dicamba, S-metolachlor, and 2,4-D}, volume={11}, ISSN={["2374-3832"]}, url={https://doi.org/10.1002/cft2.20136}, DOI={10.1002/cft2.20136}, abstractNote={Core Ideas}, journal={CROP FORAGE & TURFGRASS MANAGEMENT}, publisher={Wiley}, author={Moore, Levi D. and Jennings, Katherine M. and Monks, David W. and Jordan, David L. and Boyette, Michael D. and Leon, Ramon G. and Mahoney, Dennis J. and Everman, Wesley J. and Cahoon, Charles W.}, year={2021}, month={Nov} } @article{mahoney_jordan_hare_roma-burgos_jennings_leon_vann_everman_cahoon_2021, title={The influence of soybean population and POST herbicide application timing on in-season and subsequent-season Palmer amaranth (Amaranthus palmeri) control and economic returns}, volume={35}, ISSN={["1550-2740"]}, DOI={10.1017/wet.2020.87}, abstractNote={Abstract}, number={1}, journal={WEED TECHNOLOGY}, author={Mahoney, Denis J. and Jordan, David L. and Hare, Andrew T. and Roma-Burgos, Nilda and Jennings, Katherine M. and Leon, Ramon G. and Vann, Matthew C. and Everman, Wesley J. and Cahoon, Charles W.}, year={2021}, month={Feb}, pages={106–112} } @article{rector_pittman_beam_bamber_cahoon_frame_flessner_2020, title={Herbicide carryover to various fall-planted cover crop species}, volume={34}, ISSN={["1550-2740"]}, DOI={10.1017/wet.2019.79}, abstractNote={Abstract}, number={1}, journal={WEED TECHNOLOGY}, author={Rector, Lucas S. and Pittman, Kara B. and Beam, Shawn C. and Bamber, Kevin W. and Cahoon, Charles W. and Frame, William H. and Flessner, Michael L.}, year={2020}, month={Feb}, pages={25–34} } @article{pittman_cahoon_bamber_rector_flessner_2020, title={Herbicide selection to terminate grass, legume, and brassica cover crop species}, volume={34}, ISSN={["1550-2740"]}, DOI={10.1017/wet.2019.107}, abstractNote={Abstract}, number={1}, journal={WEED TECHNOLOGY}, author={Pittman, Kara B. and Cahoon, Charles W. and Bamber, Kevin W. and Rector, Lucas S. and Flessner, Michael L.}, year={2020}, month={Feb}, pages={48–54} } @article{hare_jordan_leon_edmisten_post_cahoon_everman_mahoney_inman_2020, title={Influence of timing and intensity of weed management on crop yield and contribution to weed emergence in cotton the following year}, volume={6}, ISSN={["2374-3832"]}, url={https://doi.org/10.1002/cft2.20021}, DOI={10.1002/cft2.20021}, abstractNote={Abstract}, number={1}, journal={CROP FORAGE & TURFGRASS MANAGEMENT}, publisher={Wiley}, author={Hare, Andrew T. and Jordan, David L. and Leon, Ramon G. and Edmisten, Keith L. and Post, Angela R. and Cahoon, Charles W. and Everman, Wesley J. and Mahoney, Denis J. and Inman, Matthew D.}, year={2020} } @article{mahoney_jordan_roma-burgos_jennings_leon_vann_everman_cahoon_2020, title={Susceptibility of Palmer amaranth (Amaranthus palmeri) to herbicides in accessions collected from the North Carolina Coastal Plain}, volume={68}, ISSN={["1550-2759"]}, url={http://dx.doi.org/10.1017/wsc.2020.67}, DOI={10.1017/wsc.2020.67}, abstractNote={Abstract}, number={6}, journal={WEED SCIENCE}, publisher={Cambridge University Press (CUP)}, author={Mahoney, Denis J. and Jordan, David L. and Roma-Burgos, Nilda and Jennings, Katherine M. and Leon, Ramon G. and Vann, Matthew C. and Everman, Wesley J. and Cahoon, Charles W.}, year={2020}, month={Nov}, pages={582–593} } @article{askew_cahoon_flessner_vangessel_langston_ferebee_2019, title={Chemical termination of cover crop rapeseed}, volume={33}, ISSN={["1550-2740"]}, DOI={10.1017/wet.2019.50}, abstractNote={Abstract}, number={5}, journal={WEED TECHNOLOGY}, author={Askew, M. Carter and Cahoon, Charles W., Jr. and Flessner, Michael L. and VanGessel, Mark J. and Langston, David B., Jr. and Ferebee, J. Harrison}, year={2019}, month={Oct}, pages={686–692} } @article{ferebee_cahoon_flessner_langston_arancibia_hines_blake_askew_2019, title={Comparison of Diquat, Glufosinate, and Saflufenacil for Desiccation of 'Dark Red Norland' Potato}, volume={29}, ISSN={["1943-7714"]}, DOI={10.21273/HORTTECH04327-19}, abstractNote={Chemical desiccants are commonly used to regulate tuber size, strengthen skin, and facilitate harvest for potato (Solanum tuberosum) production. Glufosinate is labeled for potato vine desiccation; however, limited data are available. Saflufenacil, a protoporphyrinogen oxidase–inhibiting herbicide, is an effective desiccant in other crops. Field research was conducted to evaluate glufosinate and saflufenacil as desiccants applied to ‘Dark Red Norland’ potato. Desiccants consisted of diquat, glufosinate, saflufenacil, glufosinate plus carfentrazone, and glufosinate plus saflufenacil applied at three timings, DESIC-1, DESIC-2, and DESIC-3, when size B potatoes averaged 43%, 31%, and 17% of total potato weight. Potato vine desiccation was more difficult at DESIC-1 and DESIC-2 because of immature vines. Diquat was the most effective desiccant 7 days after treatment (DAT), desiccating potato vines 88% at DESIC-1 7 DAT. Glufosinate alone desiccated potato vines 65% at the same timing; however, carfentrazone and saflufenacil added to glufosinate increased vine desiccation 8% and 16% compared with glufosinate alone, respectively. Vine desiccation by all treatments ranged 99% to 100% at 14 DAT. Desiccant and timing effects on skin set were determined using a torque meter before harvest. Skin set resulting from all desiccants and timings ranged between 1.88 and 2 lb-inch, and no significant differences were observed. No significant differences in yield were noted among desiccants. This research indicates that glufosinate and saflufenacil are suitable alternatives to diquat for potato vine desiccation; however, safety of saflufenacil applied to potatoes before harvest has not been determined.}, number={5}, journal={HORTTECHNOLOGY}, author={Ferebee, J. Harrison and Cahoon, Charles W. and Flessner, Michael L. and Langston, David B. and Arancibia, Ramon and Hines, Thomas E. and Blake, Hunter B. and Askew, M. Carter}, year={2019}, month={Oct}, pages={643–648} } @article{askew_cahoon_york_flessner_langston_ferebee_2019, title={Cotton tolerance to halauxifen-methyl applied preplant}, volume={33}, ISSN={["1550-2740"]}, DOI={10.1017/wet.2019.41}, abstractNote={Abstract}, number={4}, journal={WEED TECHNOLOGY}, author={Askew, M. Carter and Cahoon, Charles W., Jr. and York, Alan C. and Flessner, Michael L. and Langston, David B., Jr. and Ferebee, J. Harrison}, year={2019}, month={Aug}, pages={620–626} } @article{ferebee_cahoon_besancon_flessner_langston_hines_blake_askew_2019, title={Fluridone and acetochlor cause unacceptable injury to pumpkin}, volume={33}, ISSN={["1550-2740"]}, DOI={10.1017/wet.2019.42}, abstractNote={Abstract}, number={5}, journal={WEED TECHNOLOGY}, author={Ferebee, J. Harrison and Cahoon, Charles W., Jr. and Besancon, Thierry E. and Flessner, Michael L. and Langston, David B. and Hines, Thomas E. and Blake, Hunter B. and Askew, M. Carter}, year={2019}, month={Oct}, pages={748–756} } @article{beam_mirsky_cahoon_haak_flessner_2019, title={Harvest weed seed control of Italian ryegrass [Lolium perenne L. ssp. multiflorum (Lam.) Husnot], common ragweed (Ambrosia artemisiifolia L.), and Palmer amaranth (Amaranthus palmeri S. Watson)}, volume={33}, ISSN={["1550-2740"]}, DOI={10.1017/wet.2019.46}, abstractNote={Abstract}, number={4}, journal={WEED TECHNOLOGY}, author={Beam, Shawn C. and Mirsky, Steven and Cahoon, Charlie and Haak, David and Flessner, Michael}, year={2019}, month={Aug}, pages={627–632} } @article{pittman_barney_cahoon_flessner_2019, title={Influence of hairy vetch seed germination and maturation on weediness in subsequent crops}, volume={59}, ISSN={["1365-3180"]}, DOI={10.1111/wre.12380}, abstractNote={Summary}, number={6}, journal={WEED RESEARCH}, author={Pittman, K. B. and Barney, J. N. and Cahoon, C. W. and Flessner, M. L.}, year={2019}, month={Dec}, pages={427–436} } @article{braswell_cahoon_seagroves_jordan_york_2016, title={Integrating fluridone into a glufosinate-based program for Palmer amaranth control in cotton}, volume={20}, number={4}, journal={Journal of Cotton Science}, author={Braswell, L. R. and Cahoon, C. W. and Seagroves, R. W. and Jordan, D. L. and York, A. C.}, year={2016}, pages={394–402} } @article{soltani_dille_burke_everman_vangessel_davis_sikkema_2016, title={Potential Corn Yield Losses from Weeds in North America}, volume={30}, ISSN={["1550-2740"]}, DOI={10.1614/wt-d-16-00046.1}, abstractNote={Crop losses from weed interference have a significant effect on net returns for producers. Herein, potential corn yield loss because of weed interference across the primary corn-producing regions of the United States and Canada are documented. Yield-loss estimates were determined from comparative, quantitative observations of corn yields between nontreated and treatments providing greater than 95% weed control in studies conducted from 2007 to 2013. Researchers from each state and province provided data from replicated, small-plot studies from at least 3 and up to 10 individual comparisons per year, which were then averaged within a year, and then averaged over the seven years. The resulting percent yield-loss values were used to determine potential total corn yield loss in t ha−1 and bu acre−1 based on average corn yield for each state or province, as well as corn commodity price for each year as summarized by USDA-NASS (2014) and Statistics Canada (2015). Averaged across the seven years, weed interference in corn in the United States and Canada caused an average of 50% yield loss, which equates to a loss of 148 million tonnes of corn valued at over U.S.$26.7 billion annually.}, number={4}, journal={WEED TECHNOLOGY}, author={Soltani, Nader and Dille, J. Anita and Burke, Ian C. and Everman, Wesley J. and VanGessel, Mark J. and Davis, Vince M. and Sikkema, Peter H.}, year={2016}, pages={979–984} } @article{cahoon_york_jordan_seagroves_2015, title={Cotton response and Palmer amaranth control with mixtures of glufosinate and residual herbicides}, volume={19}, number={3}, journal={Journal of Cotton Science}, author={Cahoon, C. W. and York, A. C. and Jordan, D. L. and Seagroves, R. W.}, year={2015}, pages={622–630} } @article{cahoon_york_jordan_seagroves_everman_jennings_2015, title={Cotton response and Palmer amaranth control with pyroxasulfone applied preemergence and postemergence}, volume={19}, number={1}, journal={Journal of Cotton Science}, author={Cahoon, C. W. and York, A. C. and Jordan, D. L. and Seagroves, R. W. and Everman, W. J. and Jennings, K. M.}, year={2015}, pages={212–223} } @article{cahoon_york_jordan_seagroves_everman_jennings_2015, title={Fluridone carryover to rotational crops following application to cotton}, volume={19}, number={3}, journal={Journal of Cotton Science}, author={Cahoon, C. W. and York, A. C. and Jordan, D. L. and Seagroves, R. W. and Everman, W. J. and Jennings, K. M.}, year={2015}, pages={631–640} } @article{cahoon_york_jordan_everman_seagroves_culpepper_eure_2015, title={Palmer Amaranth (Amaranthus palmeri) Management in Dicamba-Resistant Cotton}, volume={29}, ISSN={["1550-2740"]}, DOI={10.1614/wt-d-15-00041.1}, abstractNote={Cotton growers rely heavily upon glufosinate and various residual herbicides applied preplant, PRE, and POST to control Palmer amaranth resistant to glyphosate and acetolactate synthase-inhibiting herbicides. Recently deregulated in the United States, cotton resistant to dicamba, glufosinate, and glyphosate (B2XF cotton) offers a new platform for controlling herbicide-resistant Palmer amaranth. A field experiment was conducted in North Carolina and Georgia to determine B2XF cotton tolerance to dicamba, glufosinate, and glyphosate and to compare Palmer amaranth control by dicamba to a currently used, nondicamba program in both glufosinate- and glyphosate-based systems. Treatments consisted of glyphosate or glufosinate applied early POST (EPOST) and mid-POST (MPOST) in a factorial arrangement of treatments with seven dicamba options (no dicamba, PRE, EPOST, MPOST, PRE followed by [fb] EPOST, PRE fb MPOST, and EPOST fb MPOST) and a nondicamba standard. The nondicamba standard consisted of fomesafen PRE, pyrithiobac EPOST, and acetochlor MPOST. Dicamba caused no injury when applied PRE and only minor, transient injury when applied POST. At time of EPOST application, Palmer amaranth control by dicamba or fomesafen applied PRE, in combination with acetochlor, was similar and 13 to 17% greater than acetochlor alone. Dicamba was generally more effective on Palmer amaranth applied POST rather than PRE, and two applications were usually more effective than one. In glyphosate-based systems, greater Palmer amaranth control and cotton yield were obtained with dicamba applied EPOST, MPOST, or EPOST fb MPOST compared with the standard herbicides in North Carolina. In contrast, dicamba was no more effective than the standard herbicides in the glufosinate-based systems. In Georgia, dicamba was as effective as the standard herbicides in a glyphosate-based system only when dicamba was applied EPOST fb MPOST. In glufosinate-based systems in Georgia, dicamba was as effective as standard herbicides only when dicamba was applied twice.}, number={4}, journal={WEED TECHNOLOGY}, author={Cahoon, Charles W. and York, Alan C. and Jordan, David L. and Everman, Wesley J. and Seagroves, Richard W. and Culpepper, A. Stanley and Eure, Peter M.}, year={2015}, pages={758–770} } @misc{cahoon_york_jordan_seagroves_everman_jennings_2015, title={Sequential and co-application of glyphosate and glufosinate in cotton}, volume={19}, number={2}, journal={Journal of Cotton Science}, author={Cahoon, C. W. and York, A. C. and Jordan, D. L. and Seagroves, R. W. and Everman, W. J. and Jennings, K. M.}, year={2015}, pages={337–350} } @article{cahoon_york_jordan_everman_seagroves_braswell_jennings_2015, title={Weed Control in Cotton by Combinations of Microencapsulated Acetochlor and Various Residual Herbicides Applied Preemergence}, volume={29}, ISSN={["1550-2740"]}, DOI={10.1614/wt-d-15-00061.1}, abstractNote={Residual herbicides are routinely recommended to aid in control of glyphosate-resistant (GR) Palmer amaranth in cotton. Acetochlor, a chloroacetamide herbicide, applied PRE, controls Palmer amaranth. A microencapsulated (ME) formulation of acetochlor is now registered for PRE application in cotton. Field research was conducted in North Carolina to evaluate cotton tolerance and Palmer amaranth control by acetochlor ME alone and in various combinations. Treatments, applied PRE, consisted of acetochlor ME, pendimethalin, or no herbicide arranged factorially with diuron, fluometuron, fomesafen, diuron plus fomesafen, and no herbicide. The PRE herbicides were followed by glufosinate applied twice POST and diuron plus MSMA directed at layby. Acetochlor ME was less injurious to cotton than pendimethalin. Acetochlor ME alone or in combination with other herbicides reduced early season cotton growth 5 to 8%, whereas pendimethalin alone or in combinations injured cotton 11 to 13%. Early season injury was transitory, and by 65 to 84 d after PRE treatment, injury was no longer noticeable. Before the first POST application of glufosinate, acetochlor ME and pendimethalin controlled Palmer amaranth 84 and 64%, respectively. Control by acetochlor ME was similar to control by diuron plus fomesafen and greater than control by diuron, fluometuron, or fomesafen alone. Greater than 90% control was obtained with acetochlor ME mixed with diuron or fomesafen. Palmer amaranth control was similar with acetochlor ME plus a full or reduced rate of fomesafen. Acetochlor ME controlled large crabgrass and goosegrass at 91 and 100% compared with control at 83 and 91%, respectively, by pendimethalin. Following glufosinate, applied twice POST, and diuron plus MSMA, at layby, 96 to 99% control was obtained late in the season by all treatments, and no differences among herbicide treatments were noted for cotton yield. This research demonstrated that acetochlor ME can be safely and effectively used in cotton weed management programs.}, number={4}, journal={WEED TECHNOLOGY}, author={Cahoon, Charles W. and York, Alan C. and Jordan, David L. and Everman, Wesley J. and Seagroves, Richard W. and Braswell, Lewis R. and Jennings, Katherine M.}, year={2015}, pages={740–750} } @article{cahoon_york_jordan_everman_seagroves_2014, title={An Alternative to Multiple Protoporphyrinogen Oxidase Inhibitor Applications in No-Till Cotton}, volume={28}, ISSN={["1550-2740"]}, DOI={10.1614/wt-d-13-00078.1}, abstractNote={Glyphosate-resistant (GR) Palmer amaranth is a widespread problem in southeastern cotton production areas. Herbicide programs to control this weed in no-till cotton commonly include flumioxazin applied with preplant burndown herbicides approximately 3 wk before planting followed by fomesafen applied PRE and then glufosinate or glyphosate applied POST. Flumioxazin and fomesafen are both protoporphyrinogen oxidase (PPO) inhibitors. Multiple yearly applications of PPO inhibitors in cotton, along with widespread use of PPO inhibitors in rotational crops, raise concerns over possible selection for PPO resistance in Palmer amaranth. An experiment was conducted to determine the potential to substitute diuron for one of the PPO inhibitors in no-till cotton. Palmer amaranth control by diuron and fomesafen applied PRE varied by location, but fomesafen was generally more effective. Control by both herbicides was inadequate when timely rainfall was not received for activation. Palmer amaranth control was more consistent when programs included a preplant residual herbicide. Applied preplant, flumioxazin was more effective than diuron. Programs with diuron preplant followed by fomesafen PRE were as effective as flumioxazin preplant followed by fomesafen only if fomesafen was activated in a timely manner. Programs with flumioxazin preplant followed by diuron PRE were as effective as flumioxazin preplant followed by fomesafen PRE at all locations, regardless of timely activation of the PRE herbicide. As opposed to flumioxazin preplant followed by fomesafen PRE, which exposes Palmer amaranth to two PPO-inhibiting herbicides, one could reduce selection pressure by using flumioxazin preplant followed by diuron PRE without sacrificing Palmer amaranth control or cotton yield.}, number={1}, journal={WEED TECHNOLOGY}, author={Cahoon, Charles W. and York, Alan C. and Jordan, David L. and Everman, Wesley J. and Seagroves, Richard W.}, year={2014}, pages={58–71} } @article{graves_liwimbi_israel_heugten_robinson_cahoon_lubbers_2011, title={Distribution of ten antibiotic resistance genes in E. coli isolates from swine manure, lagoon effluent and soil collected from a lagoon waste application field}, volume={56}, ISSN={["0015-5632"]}, DOI={10.1007/s12223-011-0019-z}, abstractNote={The prevalence of ten antibiotic resistance genes (ARGs) was evaluated in a total of 616 Escherichia coli isolates from swine manure, swine lagoon effluent, and from soils that received lagoon effluent on a commercial swine farm site in Sampson County, North Carolina (USA). Isolates with ARGs coding for streptomycin/spectinomycin (aadA/strA and strB), tetracycline (tetA and tetB), and sulfonamide (sul1) occurred most frequently (60.6-91.3%). The occurrence of E. coli isolates that carried aadA, tetA, tetB, and tetC genes was significantly more frequent in soil samples (34.0-97.2%) than in isolates from lagoon samples (20.9-90.6%). Furthermore, the frequency of isolates that contain genes coding for aadA and tetB was significantly greater in soil samples (82.6-97.2%) when compared to swine manure (16.8-86.1%). Isolates from the lagoon that carried tetA, tetC, and sul3 genes were significantly more prevalent during spring (63.3-96.7%) than during winter (13.1-67.8%). The prevalence of isolates from the lagoon that possessed the strA, strB, and sul1 resistance genes was significantly more frequent during the summer (90.0-100%) than during spring (66.6-80.0%). The data suggest that conditions in the lagoon, soil, and manure may have an impact on the occurrence of E. coli isolates with specific ARGs. Seasonal variables seem to impact the recovery isolates with ARGs; however, ARG distribution may be associated with mobile genetic elements or a reflection of the initial numbers of resistant isolates shed by the animals.}, number={2}, journal={FOLIA MICROBIOLOGICA}, author={Graves, A. K. and Liwimbi, L. and Israel, D. W. and Heugten, E. and Robinson, B. and Cahoon, C. W. and Lubbers, J. F.}, year={2011}, month={Mar}, pages={131–137} }