@article{carter_park_drake_2017, title={Short communication: Sensitive detection of norbixin in dried dairy ingredients at concentrations of less than 1 part per billion}, volume={100}, ISSN={["1525-3198"]}, DOI={10.3168/jds.2017-13095}, abstractNote={Norbixin is the water-soluble carotenoid in annatto extracts used in the cheese industry to color Cheddar cheese. The purpose of norbixin is to provide cheese color, but norbixin is also present in the whey stream and contaminates dried dairy ingredients. Regulatory restrictions dictate that norbixin cannot be present in dairy ingredients destined for infant formula or ingredients entering different international markets. Thus, there is a need for the detection and quantification of norbixin at very low levels in dried dairy ingredients to confirm its absence. A rapid method for norbixin evaluation exists, but it does not have the sensitivity required to confirm norbixin absence at very low levels in compliance with existing regulations. The current method has a limit of detection of 2.7 μg/kg and a limit of quantification of 3.5 μg/kg. The purpose of this study was to develop a method to extract and concentrate norbixin for quantification in dried dairy ingredients below 1 μg/kg (1 ppb). A reverse-phase solid-phase extraction column step was applied in the new method to concentrate and quantify norbixin from liquid and dried WPC80 (whey protein concentrate with 80% protein), WPC34 (WPC, 34% protein), permeate, and lactose. Samples were evaluated by both methods for comparison. The established method was able to quantify norbixin in whey proteins and permeates (9.39 μg/kg to 2.35 mg/kg) but was unable to detect norbixin in suspect powdered lactose samples. The newly developed method had similar performance to the established method for whey proteins and permeates but was also able to detect norbixin in powdered lactose samples. The proposed method had a >90% recovery in lactose samples and a limit of detection of 28 ppt (ng/kg) and a limit of quantification of 94 ppt (ng/kg). The developed method provides detection and quantification of norbixin for dairy ingredients that have a concentration of <1 ppb.}, number={11}, journal={JOURNAL OF DAIRY SCIENCE}, author={Carter, B. G. and Park, C. W. and Drake, M. A.}, year={2017}, month={Nov}, pages={8754–8758} } @article{park_drake_2017, title={The effect of homogenization pressure on the flavor and flavor stability of whole milk powder}, volume={100}, ISSN={["1525-3198"]}, DOI={10.3168/jds.2017-12544}, abstractNote={Flavor is one of the key factors that can limit the application and shelf life of dried dairy ingredients. Many off-flavors are caused during ingredient manufacture that carry through into ingredient applications and decrease consumer acceptance. The objective of this research was to investigate the effect of homogenization pressure on the flavor and flavor stability of whole milk powder (WMP). Whole milk powder was produced from standardized pasteurized whole milk that was evaporated to 50% solids (wt/wt), homogenized in 2 stages with varying pressures (0/0, 5.5/1.4, 11.0/2.8, or 16.5/4.3 MPa), and spray dried. Whole milk powder was evaluated at 0, 3, and 6 mo of storage at 21°C. Sensory properties were evaluated by descriptive analysis. Volatile compounds were analyzed by sorptive stir bar extraction with gas chromatography-mass spectrometry. Fat globule size in condensed whole milk and particle size of powders were measured by laser diffraction. Surface free fat, inner free fat, and encapsulated fat of WMP were measured by solvent extractions. Phospholipid content was measured by ultra-high-performance liquid chromatography-evaporative light scattering. Furosine in WMP was analyzed by ultra-high-performance liquid chromatography-mass spectrometry. Increased homogenization pressure decreased cardboard and painty flavors, volatile lipid oxidation compound concentrations, fat globule size in condensed milk, surface free fat, and inner free fat in WMP. Encapsulated fat increased and phospholipid-to-encapsulated fat ratio decreased with higher homogenization pressure. Surface free fat in powders increased cardboard flavor and lipid oxidation. These results indicate that off-flavors were decreased with increased homogenization pressures in WMP due to the decrease in free fat. To decrease off-flavor intensities in WMP, manufacturers should carefully evaluate these parameters during ingredient manufacture.}, number={7}, journal={JOURNAL OF DAIRY SCIENCE}, author={Park, Curtis W. and Drake, MaryAnne}, year={2017}, month={Jul}, pages={5195–5205} } @article{park_drake_2016, title={Condensed milk storage and evaporation affect the flavor of nonfat dry milk}, volume={99}, ISSN={["1525-3198"]}, DOI={10.3168/jds.2016-11530}, abstractNote={Unit operations in nonfat dry milk (NFDM) manufacture influence sensory properties, and consequently, its use and acceptance in ingredient applications. Condensed skim milk may be stored at refrigeration temperatures for extended periods before spray drying due to shipping or lack of drying capacity. Currently, NFDM processors have 2 options for milk concentration up to 30% solids: evaporation (E) or reverse osmosis (RO). The objective of this study was to determine the effect of condensed milk storage and milk concentration method (E vs. RO) on the flavor of NFDM and investigate mechanisms behind flavor differences. For experiment 1, skim milk was pasteurized and concentrated to 30% solids by E or RO and then either stored for 24h at 4°C or concentrated to 50% solids by E and spray dried immediately. To investigate mechanisms behind the results from experiment 1, experiment 2 was constructed. In experiment 2, pasteurized skim milk was subjected to 1 of 4 treatments: control (no E), heated in the evaporator without vacuum, E concentration to 30% solids, or E concentration to 40% solids. The milks were then diluted to the same solids content and evaluated. Volatile compounds were also measured during concentration in the vapor separator of the evaporator. Sensory properties were evaluated by descriptive sensory analysis and instrumental volatile compound analysis was conducted to evaluate volatile compounds. Interaction effects between storage and method of concentration were investigated. In experiment 1, E decreased sweet aromatic flavor and many characteristic milk flavor compounds and increased cardboard and cooked flavors in NFDM compared with RO. Liquid storage increased cardboard flavor and hexanal and octanal and decreased sweet aromatic flavors and vanillin concentration. Results from experiment 2 indicated that the characteristic milk flavors and their associated volatile compounds were removed by the vapor separator in the evaporator due to the heat and vacuum applied during concentration. These results demonstrate that off-flavors are significantly reduced when RO is used in place of E and storage of condensed milk is avoided.}, number={12}, journal={JOURNAL OF DAIRY SCIENCE}, author={Park, Curtis W. and Drake, MaryAnne}, year={2016}, month={Dec}, pages={9586–9597} } @article{mulcahy_park_drake_mulvihill_james a. o'mahony_2016, title={Improvement of the functional properties of whey protein hydrolysate by conjugation with maltodextrin}, volume={60}, ISSN={["1879-0143"]}, DOI={10.1016/j.idairyj.2016.02.049}, abstractNote={The impact of conjugation with maltodextrin on selected functional properties (i.e., solubility and thermal stability) of intact whey protein isolate (WPI) and whey protein hydrolysate (WPH) was determined. Conjugation of WPI and WPH (degree of hydrolysis 9.3%) with maltodextrin (MD) was achieved by heating solutions of 5% WPI or WPH with 5% MD, initial pH 8.2, at 90 °C for up to 24 h. The WPH had 55.4% higher levels of available amino groups compared with the WPI, which contributed to more rapid and extensive conjugation of WPH-MD, compared with WPI-MD. The WPI-MD and WPH-MD solutions heated for 8 h had significantly higher (P < 0.05) protein solubility than the respective WPI and WPH heated control solutions, in the pH range 4.0–5.0. Conjugation of WPI and WPH with MD enhanced the stability to heat-induced changes, such as turbidity development, gelation or precipitation, in the presence of 40 mm added NaCl.}, journal={INTERNATIONAL DAIRY JOURNAL}, author={Mulcahy, Eve M. and Park, Curtis W. and Drake, MaryAnne and Mulvihill, Daniel M. and James A. O'Mahony}, year={2016}, month={Sep}, pages={47–54} } @article{park_parker_drake_2016, title={Short communication: The effect of liquid storage on the flavor of whey protein concentrate}, volume={99}, ISSN={["1525-3198"]}, DOI={10.3168/jds.2016-10946}, abstractNote={Unit operations in dried dairy ingredient manufacture significantly influence sensory properties and, consequently, their use and consumer acceptance in a variety of ingredient applications. In whey protein concentrate (WPC) manufacture, liquid can be stored as whey or WPC before spray drying. The objective of this study was to determine the effect of storage, composition, and bleaching on the flavor of spray-dried WPC80. Liquid whey was manufactured and subjected to the following treatments: bleached or unbleached and liquid whey or liquid WPC storage. The experiment was replicated 3 times and included a no-storage control. All liquid storage was performed at 4°C for 24h. Flavor of the final spray-dried WPC80 was evaluated by a trained panel and volatile compound analyses. Storage of liquids increased cardboard flavor, decreased sweet aromatic flavor, and resulted in increased volatile lipid oxidation products. Bleaching altered the effect of liquid storage. Storage of unbleached liquid whey decreased sweet aromatic flavor and increased cardboard flavor and volatile lipid oxidation products compared with liquid WPC80 and no storage. In contrast, storage of bleached liquid WPC decreased sweet aromatic flavor and increased cardboard flavor and associated volatile lipid oxidation products compared with bleached liquid whey or no storage. These results confirm that liquid storage increases off-flavors in spray-dried protein but to a variable degree, depending on whether bleaching has been applied. If liquid storage is necessary, bleached WPC80 should be stored as liquid whey and unbleached WPC80 should be stored as liquid WPC to mitigate off-flavors.}, number={6}, journal={JOURNAL OF DAIRY SCIENCE}, author={Park, Curtis W. and Parker, Megan and Drake, MaryAnne}, year={2016}, month={Jun}, pages={4303–4308} } @article{park_stout_drake_2016, title={The effect of spray-drying parameters on the flavor of nonfat dry milk and milk protein concentrate 70%}, volume={99}, ISSN={["1525-3198"]}, DOI={10.3168/jds.2016-11692}, abstractNote={Unit operations during production influence the sensory properties of nonfat dry milk (NFDM) and milk protein concentrate (MPC). Off-flavors in dried dairy ingredients decrease consumer acceptance of ingredient applications. Previous work has shown that spray-drying parameters affect physical and sensory properties of whole milk powder and whey protein concentrate. The objective of this study was to determine the effect of inlet temperature and feed solids concentration on the flavor of NFDM and MPC 70% (MPC70). Condensed skim milk (50% solids) and condensed liquid MPC70 (32% solids) were produced using pilot-scale dairy processing equipment. The condensed products were then spray dried at either 160, 210, or 260°C inlet temperature and 30, 40, or 50% total solids for NFDM and 12, 22, or 32% for MPC70 in a randomized order. The entire experiment was replicated 3 times. Flavor of the NFDM and MPC70 was evaluated by sensory and instrumental volatile compound analyses. Surface free fat, particle size, and furosine were also analyzed. Both main effects (30, 40, and 50% solids and 160, 210, and 260°C inlet temperature) and interactions between solids concentration and inlet temperature were investigated. Interactions were not significant. In general, results were consistent for NFDM and MPC70. Increasing inlet temperature and feed solids concentration increased sweet aromatic flavor and decreased cardboard flavor and associated lipid oxidation products. Increases in furosine with increased inlet temperature and solids concentration indicated increased Maillard reactions during drying. Particle size increased and surface free fat decreased with increasing inlet temperature and solids concentration. These results demonstrate that increasing inlet temperatures and solids concentration during spray drying decrease off-flavor intensities in NFDM and MPC70 even though the heat treatment is greater compared with low temperature and low solids.}, number={12}, journal={JOURNAL OF DAIRY SCIENCE}, author={Park, Curtis W. and Stout, Mark A. and Drake, MaryAnne}, year={2016}, month={Dec}, pages={9598–9610} } @misc{park_drake_2014, title={The Distribution of Fat in Dried Dairy Particles Determines Flavor Release and Flavor Stability}, volume={79}, ISSN={["1750-3841"]}, DOI={10.1111/1750-3841.12396}, abstractNote={Abstract}, number={4}, journal={JOURNAL OF FOOD SCIENCE}, author={Park, C. W. and Drake, M. A.}, year={2014}, month={Apr}, pages={R452–R459} } @article{park_bastian_farkas_drake_2014, title={The Effect of Feed Solids Concentration and Inlet Temperature on the Flavor of Spray Dried Whey Protein Concentrate}, volume={79}, ISSN={["1750-3841"]}, DOI={10.1111/1750-3841.12279}, abstractNote={Abstract}, number={1}, journal={JOURNAL OF FOOD SCIENCE}, author={Park, Curtis W. and Bastian, Eric and Farkas, Brian and Drake, Mary Anne}, year={2014}, month={Jan}, pages={C19–C24} } @article{park_bastian_farkas_drake_2014, title={The effect of acidification of liquid whey protein concentrate on the flavor of spray-dried powder}, volume={97}, ISSN={["1525-3198"]}, DOI={10.3168/jds.2013-7877}, abstractNote={Off-flavors in whey protein negatively influence consumer acceptance of whey protein ingredient applications. Clear acidic beverages are a common application of whey protein, and recent studies have demonstrated that beverage processing steps, including acidification, enhance off-flavor production from whey protein. The objective of this study was to determine the effect of preacidification of liquid ultrafiltered whey protein concentrate (WPC) before spray drying on flavor of dried WPC. Two experiments were performed to achieve the objective. In both experiments, Cheddar cheese whey was manufactured, fat-separated, pasteurized, bleached (250 mg/kg of hydrogen peroxide), and ultrafiltered (UF) to obtain liquid WPC that was 13% solids (wt/wt) and 80% protein on a solids basis. In experiment 1, the liquid retentate was then acidified using a blend of phosphoric and citric acids to the following pH values: no acidification (control; pH 6.5), pH 5.5, or pH 3.5. The UF permeate was used to normalize the protein concentration of each treatment. The retentates were then spray dried. In experiment 2, 150 μg/kg of deuterated hexanal (D₁₂-hexanal) was added to each treatment, followed by acidification and spray drying. Both experiments were replicated 3 times. Flavor properties of the spray-dried WPC were evaluated by sensory and instrumental analyses in experiment 1 and by instrumental analysis in experiment 2. Preacidification to pH 3.5 resulted in decreased cardboard flavor and aroma intensities and an increase in soapy flavor, with decreased concentrations of hexanal, heptanal, nonanal, decanal, dimethyl disulfide, and dimethyl trisulfide compared with spray drying at pH 6.5 or 5.5. Adjustment to pH 5.5 before spray drying increased cabbage flavor and increased concentrations of nonanal at evaluation pH values of 3.5 and 5.5 and dimethyl trisulfide at all evaluation pH values. In general, the flavor effects of preacidification were consistent regardless of the pH to which the solutions were adjusted after spray drying. Preacidification to pH 3.5 increased recovery of D₁₂-hexanal in liquid WPC and decreased recovery of D₁₂-hexanal in the resulting powder when evaluated at pH 6.5 or 5.5. These results demonstrate that acidification of liquid WPC80 to pH 3.5 before spray drying decreases off-flavors in spray-dried WPC and suggest that the mechanism for off-flavor reduction is the decreased protein interactions with volatile compounds at low pH in liquid WPC or the increased interactions between protein and volatile compounds in the resulting powder.}, number={7}, journal={JOURNAL OF DAIRY SCIENCE}, author={Park, Curtis W. and Bastian, Eric and Farkas, Brian and Drake, MaryAnne}, year={2014}, month={Jul}, pages={4043–4051} }