@article{govan_mciver_riggsbee_deiters_2012, title={Hydrogen Peroxide Induced Activation of Gene Expression in Mammalian Cells using Boronate Estrone Derivatives}, volume={51}, ISSN={["1521-3773"]}, DOI={10.1002/anie.201203222}, abstractNote={Keeping the boron out of the ER: A genetic switch was engineered that activates gene expression in the presence of H(2)O(2). The use of a boronate group on an estrone molecule allows for activation of gene expression through binding of the estrogen receptor only when the boron group is oxidized by H(2)O(2). This sensor is highly sensitive and specific for H(2)O(2).}, number={36}, journal={ANGEWANDTE CHEMIE-INTERNATIONAL EDITION}, author={Govan, Jeane M. and McIver, Andrew L. and Riggsbee, Chad and Deiters, Alexander}, year={2012}, pages={9066–9070} } @misc{riggsbee_deiters_2010, title={Recent advances in the photochemical control of protein function}, volume={28}, ISSN={["1879-3096"]}, DOI={10.1016/j.tibtech.2010.06.001}, abstractNote={Biological processes are regulated with a high level of spatial and temporal resolution. To understand and manipulate these processes, scientists need to be able to regulate them with Nature's level of precision. In this context, light is a unique regulatory element because it can be precisely controlled in terms of location, timing and amplitude. Moreover, most biological laboratories have a wide range of light sources as standard equipment. This review article summarizes the most recent advances in light-mediated regulation of protein function and its application in a cellular context. Specifically, the photocaging of small-molecule modulators of protein function and of specific amino acid residues in proteins is discussed. In addition, examples of the photochemical control of protein function through the application of genetically engineered natural-light receptors are presented.}, number={9}, journal={TRENDS IN BIOTECHNOLOGY}, author={Riggsbee, Chad W. and Deiters, Alexander}, year={2010}, month={Sep}, pages={468–475} }