@article{orenstein_li_dirican_cheng_chang_yanilmaz_yan_zhang_2024, title={A Comparatively Low Cost, Easy-To-Fabricate, and Environmentally Friendly PVDF/Garnet Composite Solid Electrolyte for Use in Lithium Metal Cells Paired with Lithium Iron Phosphate and Silicon}, volume={6}, ISSN={["1944-8252"]}, url={https://doi.org/10.1021/acsami.4c04145}, DOI={10.1021/acsami.4c04145}, abstractNote={Solid electrolytes may be the answer to overcome many obstacles in developing the next generation of renewable batteries. A novel composite solid electrolyte (CSE) composed of a poly(vinylidene fluoride) (PVDF) base with an active nanofiber filler of aluminum-doped garnet Li ceramic, Li salt lithium bis-(trifluoromethanesulfonyl)imide (LiTFSI), Li fluoride (LiF) stabilizing additive, and plasticizer sulfolane was fabricated. In a Li|CSE|LFP cell with this CSE, a high capacity of 168 mAh g–1 with a retention of 98% after 200 cycles was obtained, representing the best performance to date of a solid electrolyte with a PVDF base and a garnet inorganic filler. In a Li metal cell with Si and Li, it yielded a discharge capacity of 2867 mAh g–1 and was cycled 60 times at a current density of 100 mAh g–1, a significant step forward in utilizing a solid electrolyte of any kind with the desirable Si anode. In producing this CSE, the components and fabrication process were chosen to have a lower cost and improved safety and environmental impact compared with the current state-of-the-art Li-ion battery.}, journal={ACS APPLIED MATERIALS & INTERFACES}, author={Orenstein, Raphael and Li, Zezhao and Dirican, Mahmut and Cheng, Hui and Chang, Liang and Yanilmaz, Meltem and Yan, Chaoyi and Zhang, Xiangwu}, year={2024}, month={Jun} } @article{cheng_yan_chang_dirican_orenstein_zhang_2024, title={Garnet-Type Composite Polymer Electrolyte for Room-Temperature All-Solid-State Li-S Battery}, volume={4}, ISSN={["2574-0962"]}, url={https://doi.org/10.1021/acsaem.3c02920}, DOI={10.1021/acsaem.3c02920}, abstractNote={Lithium–sulfur (Li–S) batteries hold significant promise as rechargeable energy storage systems due to their exceptionally high theoretical specific capacity and energy density. However, the widespread adoption of Li–S batteries has been impeded by challenges such as the diffusion of long-chain polysulfides and the formation of lithium dendrites when organic liquid electrolytes. To address these problems, a composite polymer electrolyte reinforced with Li6.28La3Al0.24Zr2O12 nanofiber (LLAZO NF) was developed. This electrolyte, featuring a garnet nanofiber filler within a PEO-based polymer system, exhibited superior ionic conductivity. The well-interconnected organic–inorganic network facilitated rapid and uninterrupted pathways for lithium-ion conduction, achieving a high Li-ion transference number. The incorporation of LLAZO NFs not only enhanced the electrochemical stability and mechanical properties of the composite polymer electrolyte, effectively mitigating lithium dendrite formation, but also contributed to the suppression of polysulfide diffusion during cycling. As a result, the all-solid-state Li–S battery utilizing this garnet-type composite polymer electrolyte demonstrated robust cycling stability and excellent rate performance at room temperature.}, journal={ACS APPLIED ENERGY MATERIALS}, author={Cheng, Hui and Yan, Chaoyi and Chang, Liang and Dirican, Mahmut and Orenstein, Raphael and Zhang, Xiangwu}, year={2024}, month={Apr} } @article{zhu_yan_li_cheng_li_liu_mao_cho_gao_gao_et al._2024, title={Recent developments of electrospun nanofibers for electrochemical energy storage and conversion}, volume={65}, ISSN={["2405-8289"]}, DOI={10.1016/j.ensm.2023.103111}, abstractNote={Electrochemical energy storage and conversion systems have received remarkable attention during the past decades because of the high demand of the world energy consumption. Various materials along with the structure designs have been utilized to enhance the overall performance. Among them, nanofibers have been widely explored due to their unique properties (i.e., high surface area, multi-functionality, high porosity, outstanding flexibility, etc.) during the past few decades. Meanwhile, electrospinning, considered a simple and low-cost approach, has attracted tremendous attention because those nanofibrous materials with functional properties prepared by this unique technique can address numerous issues, especially in energy fields. This paper aims to comprehensively review the latest advances in developing advanced electrospun nanofibers for electrochemical devices. It starts with a brief introduction to the advantages of the electrospinning technique. It highlights ongoing research activities, followed by the history of electrospinning, the principle of electrospinning, and the uniqueness of electrospun nanofibers. Afterward, state-of-the-art developments for their applications in electrochemical devices, including but not limited to rechargeable batteries, supercapacitors, fuel cells, solar cells, hydrogen storage, etc., are discussed in detail. A future vision regarding challenges and solutions is proposed at the end. This review aims to provide an extensive and comprehensive reference to apply functional electrospun nanofibers in energy areas.}, journal={ENERGY STORAGE MATERIALS}, author={Zhu, Jiadeng and Yan, Chaoyi and Li, Guoqing and Cheng, Hui and Li, Ya and Liu, Tianyi and Mao, Qian and Cho, Hyunjin and Gao, Qiang and Gao, Chunxia and et al.}, year={2024}, month={Feb} } @article{xie_jia_dirican_xia_li_liu_cui_yan_wan_liu_et al._2022, title={Highly Foldable, Super-Sensitive, and Transparent Nanocellulose/Ceramic/Polymer Cover Windows for Flexible OLED Displays}, volume={14}, ISSN={["1944-8252"]}, DOI={10.1021/acsami.2c01353}, abstractNote={Polymer cover windows are important components of flexible OLED displays but they easily generate wrinkles because of their weak folding resistance. Increasing the polymer thickness can improve the folding resistance but it decreases the touch sensitivity. Thus, fabricating highly foldable and supersensitive polymer cover windows is still challenging. Here, by incorporating cellulose nanocrystals (CNCs) and zirconia (ZrO2) into colorless polyimide (CPI), we developed a highly foldable and supersensitive hybrid cover window. Inspired by the theory of elasticity, we added rigid CNCs into CPI to improve the elastic modulus and hence the foldability. ZrO2 was introduced to improve dielectric properties, which leads to improved touch sensitivity. After these modifications, the elastic modulus of the cover windows was increased from 1432 to 2221 MPa, whereas its dielectric constant was increased from 2.95 to 3.46 (@1 × 106 Hz), resulting in significantly enhanced foldability and sensitivity. Meanwhile, because of the nano size of CNCs and ZrO2, the hybrid cover windows exhibit excellent optical properties with the transmittance of ∼88.1%@550 nm and haze of 2.39%. With improved and balanced mechanical, dielectric, and optical properties, these hybrid cover windows overcome current cover windows' defects and could be widely used in next-generation flexible displays.}, number={14}, journal={ACS APPLIED MATERIALS & INTERFACES}, author={Xie, Jingyi and Jia, Dongmei and Dirican, Mahmut and Xia, Yi and Li, Chunxing and Liu, Yi and Cui, Meng and Yan, Chaoyi and Wan, Jiayu and Liu, Hao and et al.}, year={2022}, month={Apr}, pages={16658–16668} } @article{tian_jia_dirican_cui_fang_yan_xie_liu_li_fu_et al._2022, title={Highly Soluble and Stable, High Release Rate Nanocellulose Codrug Delivery System of Curcumin and AuNPs for Dual Chemo-Photothermal Therapy}, volume={1}, ISSN={["1526-4602"]}, DOI={10.1021/acs.biomac.1c01367}, abstractNote={As a natural antitumor drug, curcumin (CUR) has received increasing attention from researchers and patients due to its various medicinal properties. However, currently CUR is still restricted due to its low and stand-alone therapeutic effects that seriously limit its clinical application. Here, by using cellulose nanocrystals (CNCs) as a nanocarrier to load CUR and AuNPs simultaneously, we developed a hybrid nanoparticle as a codrug delivery system to enhance the low and stand-alone therapeutic effects of CUR. Aided with the encapsulation of β-cyclodextrin (βCD), both the solubility and the stability of CUR are greatly enhanced (solubility increased from 0.89 to 131.7 μg/mL). Owing to the unique rod-like morphology of CNCs, the system exhibits an outstanding loading capacity of 31.4 μg/mg. Under the heat effects of coloaded AuNPs, the system demonstrates a high release rate of 77.63%. Finally, with CNC as a bridge nanocarrier, all aforementioned functions were integrated into one hybrid nanoparticle. The all-in-one integration ensures CUR to have enhanced therapeutic effects and enables the delivery system to exhibit combined chemo-photothermal therapy outcomes. This work presents a significant step toward CUR's clinical application and provides a new strategy for effective and integrative treatment of tumor disease.}, journal={BIOMACROMOLECULES}, author={Tian, Yan and Jia, Dongmei and Dirican, Mahmut and Cui, Meng and Fang, Dongjun and Yan, Chaoyi and Xie, Jingyi and Liu, Yi and Li, Chunxing and Fu, Junjun and et al.}, year={2022}, month={Jan} } @article{jia_xie_dirican_fang_yan_liu_li_cui_liu_chen_et al._2022, title={Highly smooth, robust, degradable and cost-effective modified lignin-nanocellulose green composite substrates for flexible and green electronics}, volume={236}, ISSN={["1879-1069"]}, DOI={10.1016/j.compositesb.2022.109803}, abstractNote={Cellulose-based substrates have emerged as strong candidates for flexible and green electronics to impede e-waste generation and fulfill device functions. However, current cellulose-related substrates are incapable to ensure both high performance and low-cost requirements. Here, we developed high-performance, low-cost, and eco-friendly green composite substrates for flexible and green electronics. The green composite substrates were constructed by two natural components of lignin and nanocellulose derived from wood. Through pretreatments of dialysis fraction and epoxidation modification, lignin's heterogeneous structure and moderate surface activity were remarkably improved. The two components exhibit excellent compatibility, and the regenerated substrates demonstrate plastic-like high performance and paper-like degradability, showing low surface roughness (4.68 nm), high ultimate tensile stress (146 MPa) and elastic modulus (16.16 GPa), high transmittance (59.57%@750 nm), and prominent thermal, electrical stability and flame retardancy. After lignin pretreatments, the ultimate tensile stress was vastly increased by 554%. And modified lignin can be added with an ultra-high loading amount (up to 50 wt%), which significantly reduces substrate cost. Consequently, RFID antennas were fabricated on these substrates, which demonstrate distinctive degradability. This study provides a sustainable approach to utilize lignin and cellulose to produce value-added green composites. This work presents a promising route for traditional electronics to replace non-degradable plastics to head towards flexible and green electronics to reduce e-waste generation.}, journal={COMPOSITES PART B-ENGINEERING}, author={Jia, Dongmei and Xie, Jingyi and Dirican, Mahmut and Fang, Dongjun and Yan, Chaoyi and Liu, Yi and Li, Chunxing and Cui, Meng and Liu, Hao and Chen, Gang and et al.}, year={2022}, month={May} } @article{yan_zhou_cheng_orenstein_zhu_yildiz_bradford_jur_wu_dirican_et al._2022, title={Interconnected cathode-electrolyte double-layer enabling continuous Li-ion conduction throughout solid-state Li-S battery}, volume={44}, ISSN={["2405-8297"]}, DOI={10.1016/j.ensm.2021.10.014}, abstractNote={All-solid-state lithium (Li) batteries with high energy density are a promising solution for the next-generation energy storage systems in large-scale devices. To simultaneously overcome the challenges of poor ionic conduction of solid electrolytes and shuttling of active materials, we introduce a functional electrolyte-cathode bilayer framework with interconnected LLAZO channels from the electrolyte into the cathode for advanced solid-state Li-S batteries. Differing from the traditional solid-state batteries with separated layer compositions, the introduced bilayer framework provides ultrafast and continuous ion/electron conduction. Instead of transferring Li+ across the polymer and garnet phases which involve huge interfacial resistance, Li+ is directly conducted through the LLAZO channels created continuously from the cathode layer to the solid electrolyte layer, significantly shortening the diffusion distance and facilitating the redox reaction of sulfur and sulfides. A stable cycle life is demonstrated in the prototype Li-S solid-state batteries assembled with the introduced [email protected] interconnected bilayer framework. High capacity is obtained at room temperature, indicating the superior electrochemical properties of the bilayer framework that result from the unique design of the interconnected LLAZO garnet phase.}, journal={ENERGY STORAGE MATERIALS}, author={Yan, Chaoyi and Zhou, Ying and Cheng, Hui and Orenstein, Raphael and Zhu, Pei and Yildiz, Ozkan and Bradford, Philip and Jur, Jesse and Wu, Nianqiang and Dirican, Mahmut and et al.}, year={2022}, month={Jan}, pages={136–144} } @article{cheng_yan_orenstein_dirican_wei_subjalearndee_zhang_2022, title={Polyacrylonitrile Nanofiber-Reinforced Flexible Single-Ion Conducting Polymer Electrolyte for High-Performance, Room-Temperature All-Solid-State Li-Metal Batteries}, volume={4}, ISSN={["2524-793X"]}, url={https://doi.org/10.1007/s42765-021-00128-1}, DOI={10.1007/s42765-021-00128-1}, number={3}, journal={ADVANCED FIBER MATERIALS}, publisher={Springer Science and Business Media LLC}, author={Cheng, Hui and Yan, Chaoyi and Orenstein, Raphael and Dirican, Mahmut and Wei, Shuzhen and Subjalearndee, Nakarin and Zhang, Xiangwu}, year={2022}, month={Jan} } @article{fang_yu_dirican_tian_xie_jia_yan_liu_li_liu_et al._2021, title={Disintegrable, transparent and mechanically robust high-performance antimony tin oxide/nanocellulose/polyvinyl alcohol thermal insulation films}, volume={266}, ISSN={["1879-1344"]}, DOI={10.1016/j.carbpol.2021.118175}, abstractNote={Polymer-based thermal insulation films are widely utilized to reduce the influence of solar radiation. However, current thermal insulation films face several challenges from poor thermal insulation performance and severe environmental pollution, which are caused by the non-disintegratability of polymer substrates. Here, cellulose nanofiber (CNF)/antimony tin oxide (ATO) hybrid films with and without polyvinyl alcohol (PVA) are presented and they can be used as window thermal barrier films and personal thermal management textiles. The hybrid films exhibit prominent thermal insulation performance, blocking 91.07% ultraviolet(UV) light, reflecting 95.19% near-infrared(NIR) light, and transmitting 44.89% visible(VIS) light. Meanwhile, the hybrid films demonstrate high thermal stability, high anti-UV aging stability, and robust mechanical properties. Moreover, the used-up hybrid films based on natural cellulose are of high disintegratability and recyclability. Our present work is anticipated to open up a new avenue for the fabrication of next-generation high-performance thermal insulation films with sustainable and environmentally friendly processes.}, journal={CARBOHYDRATE POLYMERS}, author={Fang, Dongjun and Yu, Huang and Dirican, Mahmut and Tian, Yan and Xie, Jingyi and Jia, Dongmei and Yan, Chaoyi and Liu, Yi and Li, Chunxing and Liu, Hao and et al.}, year={2021}, month={Aug} } @article{yu_tian_dirican_fang_yan_xie_jia_liu_li_cui_et al._2021, title={Flexible, transparent and tough silver nanowire/nanocellulose electrodes for flexible touch screen panels}, volume={273}, ISSN={["1879-1344"]}, DOI={10.1016/j.carbpol.2021.118539}, abstractNote={Flexible touch screen panel (f-TSP) has been emerging recently and metallic nanowire transparent conductive electrodes (TCEs) are its key components. However, most metallic nanowire (MNW) TCEs suffer from weak bonding strength between metal nanowire electrode layers and polymer substrates, which causes delamination of TCEs and produces serious declines in durability of f-TSPs. Here, we introduce AgS bonding and develop tough and strong electrode-substrate bonded MNW TCEs, which can enhance durability of f-TSPs significantly. We used silver nanowires (AgNWs) as metal conductive electrode and thiol-modified nanofibrillated cellulose (NFC-HS) nanopaper as substrates. Because of the existence of Ag from AgNWs and S from NFC-HS, strong AgS bonding was generated and tough TCEs were obtained. The TCEs exhibit excellent electrical stability, outstanding optical and electrical properties. The f-TSP devices integrated with the TCEs illustrate striking durability. This technique may provide a promising strategy to produce flexible and tough TCEs for next-generation high-durability f-TSPs.}, journal={CARBOHYDRATE POLYMERS}, author={Yu, Huang and Tian, Yan and Dirican, Mahmut and Fang, Dongjun and Yan, Chaoyi and Xie, Jingyi and Jia, Dongmei and Liu, Yi and Li, Chunxing and Cui, Meng and et al.}, year={2021}, month={Dec} } @misc{zhu_yan_zhang_yang_jiang_zhang_2020, title={A sustainable platform of lignin: From bioresources to materials and their applications in rechargeable batteries and supercapacitors}, volume={76}, ISSN={["1873-216X"]}, DOI={10.1016/j.pecs.2019.100788}, abstractNote={Lignin, as a renewable bioresource, has been widely explored in cellulosic biofuel and several other industries. There are limited applications of lignin in the energy industry, especially in rechargeable batteries and supercapacitors, even though tremendous research work has been done regarding the use of lignin in these fields. It is vital to take lignin into consideration because its usage not only improves the performance of these devices but also reduces the cost, contributing to obtaining more sustainable and greener energy devices. This paper reviews recent developments of lignin-derived materials in rechargeable batteries and supercapacitors. It starts with a brief introduction of the benefits of lignin, followed by the fundamental nature and preparation of lignin-derived materials. Significant attention is paid to applications of lignin-derived materials in rechargeable batteries and supercapacitors including their use as binders and electrodes for rechargeable batteries, and electrodes and electrolytes for supercapacitors with a focus on the mechanisms behind their operation. The goal is to provide a detailed review of the critical aspects related to lignin utilized as an important resource for researchers working in a diverse range of fields dealing with energy storage and conversion. Lastly, a future vision on challenges and their possible solutions are presented.}, journal={PROGRESS IN ENERGY AND COMBUSTION SCIENCE}, author={Zhu, Jiadeng and Yan, Chaoyi and Zhang, Xin and Yang, Chen and Jiang, Mengjin and Zhang, Xiangwu}, year={2020}, month={Jan} } @article{chen_yu_dirican_fang_tian_yan_xie_jia_liu_wang_et al._2020, title={Highly Thermally Stable, Green Solvent Disintegrable, and Recyclable Polymer Substrates for Flexible Electronics}, volume={41}, ISSN={["1521-3927"]}, DOI={10.1002/marc.202000292}, abstractNote={Abstract}, number={19}, journal={MACROMOLECULAR RAPID COMMUNICATIONS}, author={Chen, Linlin and Yu, Huang and Dirican, Mahmut and Fang, Dongjun and Tian, Yan and Yan, Chaoyi and Xie, Jingyi and Jia, Dongmei and Liu, Hao and Wang, Jiasheng and et al.}, year={2020}, month={Oct} } @article{chen_yu_dirican_fang_tian_yan_xie_jia_liu_wang_et al._2020, title={Highly Transparent and Colorless Nanocellulose/Polyimide Substrates with Enhanced Thermal and Mechanical Properties for Flexible OLED Displays}, volume={7}, ISSN={["2196-7350"]}, DOI={10.1002/admi.202000928}, abstractNote={Abstract}, number={20}, journal={ADVANCED MATERIALS INTERFACES}, author={Chen, Linlin and Yu, Huang and Dirican, Mahmut and Fang, Dongjun and Tian, Yan and Yan, Chaoyi and Xie, Jingyi and Jia, Dongmei and Liu, Hao and Wang, Jiasheng and et al.}, year={2020}, month={Oct} } @article{wang_yu_dirican_chen_fang_tian_yan_xie_jia_liu_et al._2020, title={Highly Transparent, Thermally Stable, and Mechanically Robust Hybrid Cellulose-Nanofiber/Polymer Substrates for the Electrodes of Flexible Solar Cells}, volume={3}, ISSN={["2574-0962"]}, DOI={10.1021/acsaem.9b01943}, abstractNote={The polymer substrates of flexible solar cell (FSC) electrodes play a crucial role in determining the electrode performance as well as the device performance and reliability. However, most of the FSC electrode polymer substrates suffer from high coefficients of thermal expansion (CTE) and thermal instability when exposed to thermal-cycling impact. Here, a nanocellulose/epoxy hybrid substrate employing chemically modified cellulose nanofibers, demonstrating significantly improved thermal properties as well as high optical transparency, is presented. Benefiting from nanoscale morphology and surface functional groups of the cellulose nanofibers, which enable excellent compatibility and interfacial interaction with the epoxy matrix, the hybrid substrate’s thermal properties are significantly improved with a decreased CTE of 19 ppm/K, increased glass -transition temperature (Tg) of 71.8 °C, and increased half-life thermal decomposition temperature (Td,50%) of 376 °C. Concurrently, mechanical properties are gre...}, number={1}, journal={ACS APPLIED ENERGY MATERIALS}, author={Wang, Ruiping and Yu, Huang and Dirican, Mahmut and Chen, Linlin and Fang, Dongjun and Tian, Yan and Yan, Chaoyi and Xie, Jingyi and Jia, Dongmei and Liu, Hao and et al.}, year={2020}, month={Jan}, pages={785–793} } @article{xu_hao_xiao_zhang_feng_dirican_yan_2020, title={Iron/manganese oxide-decorated GO-regulated highly porous polyacrylonitrile hollow fiber membrane and its excellent methylene blue-removing performance}, volume={607}, ISSN={["1873-3123"]}, DOI={10.1016/j.memsci.2020.118180}, abstractNote={Polyacrylonitrile (PAN) hollow fiber membrane wet-spun without any porogen usually has a wide pore size distribution, low porosity, and unstable porous structure. In this work, graphene oxide (GO) was selected as a structural optimizer to tune the porous structure of the PAN membrane. The results show that pore size and porosity increase from 156.4 nm and 37.0% to 590.8 nm and 81.4% as GO amount increases from 0 to 0.15%, which also causes a narrower pore size distribution. A simple and viable route of gradient hydrolysis, coordination, and oxidation was then adopted to decorate the PAN membrane with well-grown and well-dispersed iron/manganese oxide to achieve a functional membrane that could remove methylene blue (MB) from water stably and efficiently in the presence of H2O2. Compared with the membrane without GO, the functional membrane has a higher oxide decoration ratio, lower water contact angle, larger pores, higher porosity, and better mechanical property, and its MB solution flux is roughly two times higher than that of the membrane without GO. Additionally, the functional membrane can remove MB from the water after 30 cycles without any obvious efficiency attenuation; by contrast, MB removal efficiency induced by the membrane without GO attenuates remarkably after 25 cycles.}, journal={JOURNAL OF MEMBRANE SCIENCE}, author={Xu, Naiku and Hao, Zhifen and Xiao, Changfa and Zhang, Xiangwu and Feng, Yan and Dirican, Mahmut and Yan, Chaoyi}, year={2020}, month={Jul} } @article{jia_dirican_sun_chen_yan_zhu_dong_du_cheng_guo_et al._2019, title={Advanced ZnSnS3@rGO Anode Material for Superior Sodium-Ion and Lithium-Ion Storage with Ultralong Cycle Life}, volume={6}, ISSN={["2196-0216"]}, url={https://publons.com/publon/26924629/}, DOI={10.1002/celc.201801333}, abstractNote={Abstract}, number={4}, journal={CHEMELECTROCHEM}, author={Jia, Hao and Dirican, Mahmut and Sun, Na and Chen, Chen and Yan, Chaoyi and Zhu, Pei and Dong, Xia and Du, Zhuang and Cheng, Hui and Guo, Jiansheng and et al.}, year={2019}, month={Feb}, pages={1183–1191} } @article{jia_dirican_aksu_sun_chen_zhu_zhu_yan_li_ge_et al._2019, title={Carbon-enhanced centrifugally-spun SnSb/carbon microfiber composite as advanced anode material for sodium-ion battery}, volume={536}, ISSN={["1095-7103"]}, url={https://publons.com/publon/26924626/}, DOI={10.1016/j.jcis.2018.10.101}, abstractNote={Antimony tin (SnSb) based materials have become increasingly attractive as a potential anode material for sodium-ion batteries (SIBs) owing to their prominent merit of high capacity. However, cyclic stability and rate capability of SnSb anodes are currently hindered by their large volume change during repeated cycling, which results in severe capacity fading. Herein, we introduce carbon-coated centrifugally-spun [email protected] microfiber (CMF) composites as high-performance anodes for SIBs that can maintain their structural stability during repeated charge-discharge cycles. The centrifugal spinning method was performed to fabricate [email protected] due to its high speed, low cost, and large-scale fabrication features. More importantly, extra carbon coating by chemical vapor deposition (CVD) has been demonstrated as an effective method to improve the capacity retention and Coulombic efficiency of the [email protected] anode. Electrochemical test results indicated that the as-prepared [email protected]@C anode could deliver a large reversible capacity of 798 mA h∙g−1 at the 20th cycle as well as a high capacity retention of 86.8% and excellent Coulombic efficiency of 98.1% at the 100th cycle. It is, therefore, demonstrated that [email protected]@C composite is a promising anode material candidate for future high-performance SIBs.}, journal={JOURNAL OF COLLOID AND INTERFACE SCIENCE}, author={Jia, Hao and Dirican, Mahmut and Aksu, Cemile and Sun, Na and Chen, Chen and Zhu, Jiadeng and Zhu, Pei and Yan, Chaoyi and Li, Ya and Ge, Yeqian and et al.}, year={2019}, month={Feb}, pages={655–663} } @article{zhu_yan_zhu_zang_jia_dong_du_zhang_wu_dirican_et al._2019, title={Flexible electrolyte-cathode bilayer framework with stabilized interface for room-temperature all-solid-state lithium-sulfur batteries}, volume={17}, ISSN={["2405-8297"]}, url={https://publons.com/publon/9539991/}, DOI={10.1016/j.ensm.2018.11.009}, abstractNote={Lithium-sulfur batteries (LSBs) are promising next-generation energy storage system beyond state-of-the-art lithium-ion batteries because of their low cost and high energy density. However, liquid electrolyte-based LSBs suffer from “polysulfide shuttle”, and safety concerns originated from the use of flammable organic electrolytes and the formation of lithium dendrites. Herein, we report a novel bilayer framework through integrating a three-dimensional (3D) carbon nanofiber/sulfur (CNF/S) cathode with one-dimensional (1D) ceramic Li0.33La0.557TiO3 (LLTO) nanofiber-poly(ethylene oxide) (PEO) solid composite electrolyte to serve as both cathode and electrolyte for room-temperature ASSLSBs. The stabilized cycling performance of this novel bilayer structure design lies in the reduced interfacial resistance and enhanced electrode/electrolyte interfacial stability due to the addition of Li+ conducting 1D LLTO nanofibers, as well as the formed fast-continuous electron/ion transportation pathways within the 3D cathode architecture. Meanwhile, the mechanically robust bilayer framework with micro-/meso-pores could also accommodate the large volume change of sulfur during continuous charge-discharge process and help suppress the Li dendrite formation. As a result of the aforementioned benefits of the novel bilayer structure design, the introduced ASSLSBs could deliver a stable cycling performance at room temperature with high Coulombic efficiency of over 99%.}, journal={ENERGY STORAGE MATERIALS}, author={Zhu, Pei and Yan, Chaoyi and Zhu, Jiadeng and Zang, Jun and Jia, Hao and Dong, Xia and Du, Zhuang and Zhang, Chunming and Wu, Nianqiang and Dirican, Mahmut and et al.}, year={2019}, month={Feb}, pages={220–225} } @article{surendran_shanmugapriya_zhu_yan_vignesh_lee_zhang_selvan_2019, title={Hydrothermally synthesised NiCoP nanostructures and electrospun N-doped carbon nanofiber as multifunctional potential electrode for hybrid water electrolyser and supercapatteries}, volume={296}, ISSN={["1873-3859"]}, url={https://publons.com/publon/21201014/}, DOI={10.1016/j.electacta.2018.11.078}, abstractNote={In this work, a facile single-step hydrothermal technique is used to prepare a spherically concomitant foamy NiCoP as positrode for supercapatteries. Similarly, the nitrogen-doped carbon nanofibers are prepared by simple electrospinning technique to use as negatrode. The prepared materials are raptly examined through primary studies for both energy conversion and storage applications. Fascinatingly, NiCoP electrode encourages oxygen evolution reaction, and the carbon nanofiber electrode emboldens hydrogen evolution reaction with the minimum overpotential of 257 mV and 160 mV, respectively. In addition, a supercapattery is designed and operated at a full voltage window of 1.6 V using the fusion of carbon nanofiber as the negatrode and the cutting-edge NiCoP as the positrode, which presents a superior energy (56 Wh kg−1) and an improved power density (5333 W kg−1) with a long cyclic stability (5000 cycles). Finally, the fabricated supercapattery device is used to power the constructed hybrid water electrolyser that requisites a low cell voltage of 1.71 V to afford a current density of 10 mA cm−2. Overall, the prepared electrodes reveal its superiority of handling the multifunctional challenges for both water electrolyzer and supercapatteries.}, journal={ELECTROCHIMICA ACTA}, author={Surendran, Subramani and Shanmugapriya, Sathyanarayanan and Zhu, Pei and Yan, Chaoyi and Vignesh, Ramasamy Hari and Lee, Yun Sung and Zhang, Xiangwu and Selvan, Ramakrishnan Kalai}, year={2019}, month={Feb}, pages={1083–1094} } @article{shanmugapriya_zhu_yan_asiri_zhang_selvan_2019, title={Multifunctional High-Performance Electrocatalytic Properties of Nb2O5 Incorporated Carbon Nanofibers as Pt Support Catalyst}, volume={6}, ISSN={["2196-7350"]}, url={https://publons.com/publon/22082964/}, DOI={10.1002/admi.201900565}, abstractNote={Abstract}, number={17}, journal={ADVANCED MATERIALS INTERFACES}, author={Shanmugapriya, Sathyanarayanan and Zhu, Pei and Yan, Chaoyi and Asiri, Abdullah M. and Zhang, Xiangwu and Selvan, Ramakrishnan Kalai}, year={2019}, month={Sep} } @article{jia_dirican_sun_chen_zhu_yan_dong_du_guo_karaduman_et al._2019, title={SnS hollow nanofibers as anode materials for sodium-ion batteries with high capacity and ultra-long cycling stability}, volume={55}, ISSN={["1364-548X"]}, url={https://publons.com/publon/2973443/}, DOI={10.1039/c8cc07332e}, abstractNote={In this study, a novel anode material of SnS hollow nanofibers (SnS HNFs) was rationally synthesized by a facile process and demonstrated to be a promising anode candidate for sodium-ion batteries.}, number={4}, journal={CHEMICAL COMMUNICATIONS}, author={Jia, Hao and Dirican, Mahmut and Sun, Na and Chen, Chen and Zhu, Pei and Yan, Chaoyi and Dong, Xia and Du, Zhuang and Guo, Jiansheng and Karaduman, Yekta and et al.}, year={2019}, month={Jan}, pages={505–508} } @article{selva_zhu_yan_zhu_dirican_shanmugavani_lee_zhang_2018, title={Biomass-derived porous carbon modified glass fiber separator as polysulfide reservoir for Li-S batteries}, volume={513}, ISSN={["1095-7103"]}, url={https://doi.org/10.1016/j.jcis.2017.11.016}, DOI={10.1016/j.jcis.2017.11.016}, abstractNote={Biomass-derived porous carbon has been considered as a promising sulfur host material for lithium-sulfur batteries because of its high conductive nature and large porosity. The present study explored biomass-derived porous carbon as polysulfide reservoir to modify the surface of glass fiber (GF) separator. Two different carbons were prepared from Oak Tree fruit shells by carbonization with and without KOH activation. The KOH activated porous carbon (AC) provides a much higher surface area (796 m2 g-1) than pyrolized carbon (PC) (334 m2 g-1). The R factor value, calculated from the X-ray diffraction pattern, revealed that the activated porous carbon contains more single-layer sheets with a lower degree of graphitization. Raman spectra also confirmed the presence of sp3-hybridized carbon in the activated carbon structure. The COH functional group was identified through X-ray photoelectron spectroscopy for the polysulfide capture. Simple and straightforward coating of biomass-derived porous carbon onto the GF separator led to an improved electrochemical performance in Li-S cells. The Li-S cell assembled with porous carbon modified GF separator (ACGF) demonstrated an initial capacity of 1324 mAh g-1 at 0.2 C, which was 875 mAh g-1 for uncoated GF separator (calculated based on the 2nd cycle). Charge transfer resistance (Rct) values further confirmed the high ionic conductivity nature of porous carbon modified separators. Overall, the biomass-derived activated porous carbon can be considered as a promising alternative material for the polysulfide inhibition in Li-S batteries.}, journal={JOURNAL OF COLLOID AND INTERFACE SCIENCE}, publisher={Elsevier BV}, author={Selva, Ramakrishnan Kalai and Zhu, Pei and Yan, Chaoi and Zhu, Jiadeng and Dirican, Mahmut and Shanmugavani, A. and Lee, Yun Sung and Zhang, Xiangwu}, year={2018}, month={Mar}, pages={231–239} } @article{jia_dirican_chen_zhu_yan_dong_du_guo_wang_tang_et al._2018, title={Carbon-coated CoS@rGO anode material with enhanced cyclic stability for sodium storage}, volume={233}, ISSN={["1873-4979"]}, url={https://publons.com/publon/26924642/}, DOI={10.1016/j.matlet.2018.08.150}, abstractNote={Carbon-coated cobalt [email protected] graphene oxide ([email protected]@C) composite was innovatively synthesized by a simple solvothermal reaction and subsequent carbon coating process for use as the anode material in sodium-ion batteries (SIBs). In this composite structure, the rGO network and extra outer carbon coating worked synergically to achieve excellent electrode architecture stability upon long-term cycling. Specifically, the [email protected]@C composite anode demonstrated superior reversible capacity (706 mAh·g−1 at 100 mA·g−1 at the 1st cycle), high rate capability (374 mAh·g−1 at 1.6 A·g−1), and remarkably stable cycling performance (80% capacity preservation for up to 100 cycles) based on the synergistic action of rGO and carbon coating on CoS. In addition to improving the electrochemical performance of CoS anodes, this composite material strategy can be conveniently adapted to other metal-based anode designs to improve their cycling stability and promote their application in energy storage.}, journal={MATERIALS LETTERS}, author={Jia, Hao and Dirican, Mahmut and Chen, Chen and Zhu, Pei and Yan, Chaoyi and Dong, Xia and Du, Zhuang and Guo, Jiansheng and Wang, Jiasheng and Tang, Fangcheng and et al.}, year={2018}, month={Dec}, pages={158–161} } @article{zhu_zang_zhu_lu_chen_jiang_yan_dirican_selvan_kim_et al._2018, title={Effect of reduced graphene oxide reduction degree on the performance of polysulfide rejection in lithium-sulfur batteries}, volume={126}, ISSN={["1873-3891"]}, url={https://publons.com/publon/1678921/}, DOI={10.1016/j.carbon.2017.10.063}, abstractNote={Lithium-sulfur (Li-S) batteries are considered as a promising candidate for large-scale applications such as electrical vehicles (EVs) because of their high theoretical capacity, large energy density and low cost. However, due to the shuttling effect of polysulfides, the continuous capacity fading during cycling remains a substantial bumper for the practical use of Li-S batteries. Here, reduced graphene oxide (rGO) materials with different reduction degrees were used as the polysulfide inhibitor and were coated onto glass fiber separators to minimize the shutting of polysulfides. The influence of reduction degree on the effort of polysulfide rejection was investigated. The incorporation of rGO coating with higher reduction degree largely minimized the polysulfide shuttling, thus the Li-S cells with separators modified with high-reduction degree rGO was able to maintain a capacity of 733 mAh g−1 after 100 cycles and delivered a high capacity of 519 mAh g−1 at 2C, which were 42% and 90% higher than those of cells with separators coated with low-reduction degree rGO. Therefore, it was found that rGO with higher reduction degree demonstrated better polysulfide rejection performance than rGO with lower reduction degree. This study provides a promising strategy in the rGO selection for high-performance Li-S batteries.}, journal={CARBON}, publisher={Elsevier BV}, author={Zhu, Pei and Zang, Jun and Zhu, Jiadeng and Lu, Yao and Chen, Chen and Jiang, Mengjin and Yan, Chaoyi and Dirican, Mahmut and Selvan, R. Kalai and Kim, David and et al.}, year={2018}, month={Jan}, pages={594–600} } @article{jia_sun_dirican_li_chen_zhu_yan_zang_guo_tao_et al._2018, title={Electrospun Kraft Lignin/Cellulose Acetate-Derived Nanocarbon Network as an Anode for High-Performance Sodium-Ion Batteries}, volume={10}, ISSN={["1944-8244"]}, url={https://publons.com/publon/26924644/}, DOI={10.1021/acsami.8b13033}, abstractNote={An innovative nanocarbon network material was synthesized from electrospun kraft lignin and cellulose acetate blend nanofibers after carbonization at 1000 °C in a nitrogen atmosphere, and its electrochemical performance was evaluated as an anode material in sodium-ion batteries. Apart from its unique network architecture, introduced carbon material possesses high oxygen content of 13.26%, wide interplanar spacing of 0.384 nm, and large specific surface area of 540.95 m2·g-1. The electrochemical test results demonstrate that this new nanocarbon network structure delivers a reversible capacity of 340 mA h·g-1 at a current density of 50 mA·g-1 after 200 cycles and exhibits a high rate capacity by delivering a capacity of 103 mA h·g-1 at an increased current density of 400 mA·g-1. The present work rendered an innovative approach for preparing nanocarbon materials for energy-storage applications and could open up new avenues for novel nanocarbon fabrication from green and environmentally friendly raw materials.}, number={51}, journal={ACS APPLIED MATERIALS & INTERFACES}, author={Jia, Hao and Sun, Na and Dirican, Mahmut and Li, Ya and Chen, Chen and Zhu, Pei and Yan, Chaoyi and Zang, Jun and Guo, Jiansheng and Tao, Jinsong and et al.}, year={2018}, month={Dec}, pages={44368–44375} } @article{jia_dirican_zhu_chen_yan_zhu_li_guo_caydamli_zhang_et al._2018, title={High-performance SnSb@rGO@CMF composites as anode material for sodium-ion batteries through high-speed centrifugal spinning}, volume={752}, ISSN={["1873-4669"]}, url={https://doi.org/10.1016/j.jallcom.2018.04.141}, DOI={10.1016/j.jallcom.2018.04.141}, abstractNote={Antimony tin alloy (SnSb) has been regarded as a promising anode material for sodium-ion batteries due to its high capacity. However, the rapid capacity decay of SnSb anodes caused by volume changes during repeated cycles must be solved before they can be used in practical batteries. Here, we introduce centrifugally-spun [email protected]@CMF composite anode for sodium-ion batteries, which not only has high sodium storage capability but also maintains its structural integrity after repetitive cycles. [email protected]@CMF composite was prepared by high-speed and cost-effective centrifugal spinning and subsequent heat treatment processes. Electrochemical performance results demonstrated that [email protected]@CMF composite anode had excellent initial reversible capacity (350.3 mAh g−1), outstanding initial Coulombic efficiency (68.2%), and superior capacity retention (91.1%) over 200 cycles at 50 mA g−1. Therefore, centrifugally-spun [email protected][email protected] composite has great application prospect as an anode material for sodium-ion batteries.}, journal={JOURNAL OF ALLOYS AND COMPOUNDS}, publisher={Elsevier BV}, author={Jia, Hao and Dirican, Mahmut and Zhu, Jiadeng and Chen, Chen and Yan, Chaoyi and Zhu, Pei and Li, Ya and Guo, Jiansheng and Caydamli, Yavuz and Zhang, Xiangwu and et al.}, year={2018}, month={Jul}, pages={296–302} } @article{zhu_zhu_yan_dirican_zang_jia_li_kiyak_tan_zhang_et al._2018, title={In Situ Polymerization of Nanostructured Conductive Polymer on 3D Sulfur/Carbon Nanofiber Composite Network as Cathode for High-Performance Lithium-Sulfur Batteries}, volume={5}, ISSN={["2196-7350"]}, url={https://doi.org/10.1002/admi.201701598}, DOI={10.1002/admi.201701598}, abstractNote={Abstract}, number={10}, journal={ADVANCED MATERIALS INTERFACES}, publisher={Wiley}, author={Zhu, Pei and Zhu, Jiadeng and Yan, Chaoyi and Dirican, Mahmut and Zang, Jun and Jia, Hao and Li, Ya and Kiyak, Yasar and Tan, Hongsheng and Zhang, Xiangwu and et al.}, year={2018}, month={May} } @article{zhu_yan_dirican_zhu_zang_selvan_chung_jia_li_kiyak_et al._2018, title={Li0.33La0.557TiO3 ceramic nanofiber-enhanced polyethylene oxide-based composite polymer electrolytes for all-solid-state lithium batteries}, volume={6}, ISSN={["2050-7496"]}, url={https://publons.com/publon/1573984/}, DOI={10.1039/c7ta10517g}, abstractNote={A polyethylene oxide-based composite solid polymer electrolyte filled with one-dimensional ceramic Li0.33La0.557TiO3 nanofibers was designed and prepared.}, number={10}, journal={JOURNAL OF MATERIALS CHEMISTRY A}, publisher={Royal Society of Chemistry (RSC)}, author={Zhu, Pei and Yan, Chaoyi and Dirican, Mahmut and Zhu, Jiadeng and Zang, Jun and Selvan, R. Kalai and Chung, Ching-Chang and Jia, Hao and Li, Ya and Kiyak, Yasar and et al.}, year={2018}, month={Mar}, pages={4279–4285} } @article{jia_dirican_chen_zhu_yan_li_zhu_li_guo_zhang_et al._2018, title={Rationally designed carbon coated ZnSnS3 nano cubes as high-performance anode for advanced sodium-ion batteries}, volume={292}, ISSN={["1873-3859"]}, url={https://publons.com/publon/16881651/}, DOI={10.1016/j.electacta.2018.09.184}, abstractNote={Metal sulfides have gradually gained attention as preferable anode materials in sodium-ion batteries (SIBs) due to their high theoretical capacities. In this work, we report for the first time the synthesis of carbon coated ZnSnS3 nanocubes (ZnSnS3@C NCs) as high-performance anode material for SIBs. The outer carbon coating surrounding the ZnSnS3 active material not only enhances the electronic conductivity of the anode but also increases the electrode reaction active sites. Thus, it can greatly improve the reversible capacity as well as homogenize the repeated volume changes of the active material and decrease the mechanical stress caused during the prolonged charge/discharge process, which could finally enable an enhanced electrode stability. Electrochemical test results demonstrated that the introduced ZnSnS3@C NC anode is capable of delivering a high reversible capacity of 661.4 mAh g−1 at a current density of 100 mA g−1 after 250 cycles (with capacity retention of 97.1%) and demonstrating a stable Coulombic efficiency of over 99%. To the best of our knowledge, both the reversible capacity and cycling stability performance introduced in this work are so far the best among metallic sulfur-based anodes and are even superior to some recently reported SnS2-based anodes.}, journal={ELECTROCHIMICA ACTA}, author={Jia, Hao and Dirican, Mahmut and Chen, Chen and Zhu, Pei and Yan, Chaoyi and Li, Ya and Zhu, Jiadeng and Li, Zhaoling and Guo, Jiansheng and Zhang, Xiangwu and et al.}, year={2018}, month={Dec}, pages={646–654} } @article{jia_dirican_chen_zhu_zhu_yan_li_dong_guo_zhang_et al._2018, title={Reduced Graphene Oxide-Incorporated SnSb@CNF Composites as Anodes for High-Performance Sodium-Ion Batteries}, volume={10}, ISSN={["1944-8244"]}, url={https://doi.org/10.1021/acsami.7b18921}, DOI={10.1021/acsami.7b18921}, abstractNote={Sodium-ion batteries (SIBs) are promising alternatives to lithium-ion batteries because of the low cost and natural abundance of sodium resources. Nevertheless, low energy density and poor cycling stability of current SIBs unfavorably hinder their practical implementation for the smart power grid and stationary storage applications. Antimony tin (SnSb) is one of the most promising anode materials for next-generation SIBs attributing to its high capacity, high abundance, and low toxicity. However, the practical application of SnSb anodes in SIBs is currently restricted because of their large volume changes during cycling, which result in serious pulverization and loss of electrical contact between the active material and the carbon conductor. Herein, we apply reduced graphene oxide (rGO)-incorporated SnSb@carbon nanofiber (SnSb@rGO@CNF) composite anodes in SIBs that can sustain their structural stability during prolonged charge-discharge cycles. Electrochemical performance results shed light on that the combination of rGO, CNF, and SnSb alloy led to a high-capacity anode (capacity of 490 mAh g-1  at the 10th cycle) with a high capacity retention of 87.2% and a large Coulombic efficiency of 97.9% at the 200th cycle. This work demonstrates that the SnSb@rGO@CNF composite is a potential and attractive anode material for next-generation, high-energy SIBs.}, number={11}, journal={ACS APPLIED MATERIALS & INTERFACES}, publisher={American Chemical Society (ACS)}, author={Jia, Hao and Dirican, Mahmut and Chen, Chen and Zhu, Jiadeng and Zhu, Pei and Yan, Chaoyi and Li, Ya and Dong, Xia and Guo, Jiansheng and Zhang, Xiangwu and et al.}, year={2018}, month={Mar}, pages={9696–9703} } @article{li_zhu_shi_dirican_zhu_yan_jia_zang_he_zhang_et al._2018, title={Ultrafine and polar ZrO2-inlaid porous nitrogen-doped carbon nanofiber as efficient polysulfide absorbent for high-performance lithium-sulfur batteries with long lifespan}, volume={349}, ISSN={["1873-3212"]}, url={https://doi.org/10.1016/j.cej.2018.05.074}, DOI={10.1016/j.cej.2018.05.074}, abstractNote={The limitations of low active material utilization, severe capacity fading and short lifespan, mainly resulting from the intermediate polysulfides shuttling, have been hampering the development and practical applications of the lithium-sulfur (Li-S) battery technology. To overcome these issues, a porous nitrogen-doped carbon nanofiber membrane containing ultrafine and polar ZrO2 ([email protected]2) has been investigated as a promising polysulfide host in Li-S batteries. The [email protected]2 interlayer not only serves as a high efficiency lithium polysulfide barrier to suppress the side reactions which is further demonstrated by molecular modeling studies, but also functions as an upper current collector which can enhance the polysulfide redox reactions. Thereby, Li-S batteries with high capacity, prolonged cycle life and stable reversible cyclability can be achieved. A negligible capacity fading rate of 0.039% per cycle over 500 cycles at 0.2 C is obtained. This work offers a facile and effective method of promoting Li-S batteries for practical applications.}, journal={CHEMICAL ENGINEERING JOURNAL}, publisher={Elsevier BV}, author={Li, Ya and Zhu, Jiadeng and Shi, Rongwei and Dirican, Mahmut and Zhu, Pei and Yan, Chaoyi and Jia, Hao and Zang, Jun and He, Jihuan and Zhang, Xiangwu and et al.}, year={2018}, month={Oct}, pages={376–387} } @article{zhu_zhu_zang_chen_lu_jiang_yan_dirican_selvan_zhang_et al._2017, title={A novel bi-functional double-layer rGO-PVDF/PVDF composite nanofiber membrane separator with enhanced thermal stability and effective polysulfide inhibition for high-performance lithium-sulfur batteries}, volume={5}, ISSN={["2050-7496"]}, url={https://doi.org/10.1039/C7TA03301J}, DOI={10.1039/c7ta03301j}, abstractNote={A novel, bi-functional double-layer reduced graphene oxide (rGO)–polyvinylidene fluoride (PVDF)/PVDF membrane was fabricated by a simple electrospinning technique and was used as a promising separator for lithium–sulfur batteries.}, number={29}, journal={JOURNAL OF MATERIALS CHEMISTRY A}, publisher={Royal Society of Chemistry (RSC)}, author={Zhu, Pei and Zhu, Jiadeng and Zang, Jun and Chen, Chen and Lu, Yao and Jiang, Mengjin and Yan, Chaoyi and Dirican, Mahmut and Selvan, Ramakrishnan Kalai and Zhang, Xiangwu and et al.}, year={2017}, month={Aug}, pages={15096–15104} }