@article{yu_zhang_sun_wang_ranson_ye_weng_gu_2016, title={Internalized compartments encapsulated nanogels for targeted drug delivery}, volume={8}, ISSN={["2040-3372"]}, DOI={10.1039/c5nr08895j}, abstractNote={Drug delivery systems inspired by natural particulates hold great promise for targeted cancer therapy. An endosome formed by internalization of plasma membrane has a massive amount of membrane proteins and receptors on the surface, which is able to specifically target the homotypic cells. Herein, we describe a simple method to fabricate an internalized compartments encapsulated nanogel with endosome membrane components (EM-NG) from source cancer cells. Following intracellular uptake of methacrylated hyaluronic acid (m-HA) adsorbed SiO2/Fe3O4 nanoparticles encapsulating a crosslinker and a photoinitiator, EM-NG was readily prepared through in situ crosslinking initiated under UV irradiation after internalization. The resulting nanogels loaded with doxorubicin (DOX) displayed enhanced internalization efficiency to the source cells through a specific homotypic affinity in vitro. However, when treated with the non-source cells, the EM-NGs exhibited insignificant difference in therapeutic efficiency compared to a bare HA nanogel with DOX. This study illustrates the potential of utilizing an internalized compartments encapsulated formulation for targeted cancer therapy, and offers guidelines for developing a natural particulate-inspired drug delivery system.}, number={17}, journal={NANOSCALE}, author={Yu, Jicheng and Zhang, Yuqi and Sun, Wujin and Wang, Chao and Ranson, Davis and Ye, Yanqi and Weng, Yuyan and Gu, Zhen}, year={2016}, pages={9178–9184} } @article{di_yu_ye_ranson_jindal_gu_2015, title={Engineering Synthetic Insulin-Secreting Cells Using Hyaluronic Acid Microgels Integrated with Glucose-Responsive Nanoparticles}, volume={8}, ISSN={["1865-5033"]}, DOI={10.1007/s12195-015-0390-y}, number={3}, journal={CELLULAR AND MOLECULAR BIOENGINEERING}, author={Di, Jin and Yu, Jicheng and Ye, Yanqi and Ranson, Davis and Jindal, Abhilasha and Gu, Zhen}, year={2015}, month={Sep}, pages={445–454} } @article{yu_zhang_ye_disanto_sun_ranson_ligler_buse_gu_2015, title={Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery}, volume={112}, ISSN={["0027-8424"]}, DOI={10.1073/pnas.1505405112}, abstractNote={Significance For exploiting synthetic glucose-responsive insulin delivery systems, challenges remain to demonstrate a strategy that would combine ( i ) fast responsiveness, ( ii ) ease of administration, and ( iii ) excellent biocompatibility. We have developed a novel glucose-responsive insulin delivery device using a painless microneedle-array patch containing hypoxia-sensitive hyaluronic acid-based vesicles. The vesicles quickly dissociate and release encapsulated insulin under the local hypoxic environment, caused by the enzymatic oxidation of glucose in the hyperglycemic state. This “smart insulin patch” with a new enzyme-based glucose-responsive mechanism can regulate the blood glucose of type 1 diabetic mice to achieve normal levels, with faster responsiveness compared with the commonly used pH-sensitive formulations, and can avoid the risk of hypoglycemia. }, number={27}, journal={PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA}, author={Yu, Jicheng and Zhang, Yuqi and Ye, Yanqi and DiSanto, Rocco and Sun, Wujin and Ranson, Davis and Ligler, Frances S. and Buse, John B. and Gu, Zhen}, year={2015}, month={Jul}, pages={8260–8265} }