@article{yu_zhang_sun_wang_ranson_ye_weng_gu_2016, title={Internalized compartments encapsulated nanogels for targeted drug delivery}, volume={8}, ISSN={["2040-3372"]}, DOI={10.1039/c5nr08895j}, abstractNote={Drug delivery systems inspired by natural particulates hold great promise for targeted cancer therapy. An endosome formed by internalization of plasma membrane has a massive amount of membrane proteins and receptors on the surface, which is able to specifically target the homotypic cells. Herein, we describe a simple method to fabricate an internalized compartments encapsulated nanogel with endosome membrane components (EM-NG) from source cancer cells. Following intracellular uptake of methacrylated hyaluronic acid (m-HA) adsorbed SiO2/Fe3O4 nanoparticles encapsulating a crosslinker and a photoinitiator, EM-NG was readily prepared through in situ crosslinking initiated under UV irradiation after internalization. The resulting nanogels loaded with doxorubicin (DOX) displayed enhanced internalization efficiency to the source cells through a specific homotypic affinity in vitro. However, when treated with the non-source cells, the EM-NGs exhibited insignificant difference in therapeutic efficiency compared to a bare HA nanogel with DOX. This study illustrates the potential of utilizing an internalized compartments encapsulated formulation for targeted cancer therapy, and offers guidelines for developing a natural particulate-inspired drug delivery system.}, number={17}, journal={NANOSCALE}, author={Yu, Jicheng and Zhang, Yuqi and Sun, Wujin and Wang, Chao and Ranson, Davis and Ye, Yanqi and Weng, Yuyan and Gu, Zhen}, year={2016}, pages={9178–9184} } @article{di_yu_ye_ranson_jindal_gu_2015, title={Engineering Synthetic Insulin-Secreting Cells Using Hyaluronic Acid Microgels Integrated with Glucose-Responsive Nanoparticles}, volume={8}, ISSN={["1865-5033"]}, DOI={10.1007/s12195-015-0390-y}, number={3}, journal={CELLULAR AND MOLECULAR BIOENGINEERING}, author={Di, Jin and Yu, Jicheng and Ye, Yanqi and Ranson, Davis and Jindal, Abhilasha and Gu, Zhen}, year={2015}, month={Sep}, pages={445–454} } @article{yu_zhang_ye_disanto_sun_ranson_ligler_buse_gu_2015, title={Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery}, volume={112}, ISSN={["0027-8424"]}, DOI={10.1073/pnas.1505405112}, abstractNote={Significance}, number={27}, journal={PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA}, author={Yu, Jicheng and Zhang, Yuqi and Ye, Yanqi and DiSanto, Rocco and Sun, Wujin and Ranson, Davis and Ligler, Frances S. and Buse, John B. and Gu, Zhen}, year={2015}, month={Jul}, pages={8260–8265} }