@article{hackman_cook_strahm_carter_woodley_garcia_albaugh_rubilar_campoe_2024, title={Pinus taeda carryover phosphorus availability on the lower Atlantic Coastal Plain}, volume={555}, ISSN={["1872-7042"]}, DOI={10.1016/j.foreco.2024.121701}, abstractNote={Phosphorus (P) fertilizer that remains in the soil after harvest and into the subsequent rotation is referred to as carryover P. Carryover P is not well understood in loblolly pine (P. taeda) silviculture, especially on highly P responsive sites, where this effect could potentially have the greatest benefit to land managers. Our study aims to determine the duration of the P carryover effect and the magnitude of response to soil P as it relates to previously applied P fertilizer rates from the previous rotation. To address this knowledge gap, we studied two highly weathered sites on the lower Atlantic coastal plain: a somewhat poorly drained Spodosol and a poorly drained Alfisol over three years from pre- to post-harvest. Two years post planting, carryover fertilizer treatments resulted in a 13% increase in height for the 121 kg P ha-1, a 15% for the 81 kg P ha-1, and a 17% increase for the fertilized 40 + 45 kg P ha-1 treatments compared to the control for the Alfisol. Spodosols appeared to respond to any additional fertilization compared to the control group regardless of rate. Importantly, we found that O horizon mass and P content from the first rotation, approximately seven years before harvest, exhibited a positive linear relationship with one-year-old heights in the Spodosol and one- and two-year-old heights in the Alfisol. These findings shed light on the importance of the O horizon characteristics and its potential as an indicator for tree growth in subsequent rotations.}, journal={FOREST ECOLOGY AND MANAGEMENT}, publisher={Elsevier BV}, author={Hackman, Jacob and Cook, Rachel and Strahm, Brian and Carter, David and Woodley, Alex and Garcia, Kevin and Albaugh, Timothy and Rubilar, Rafael and Campoe, Otavio}, year={2024}, month={Mar} } @article{hackman_woodley_carter_strahm_averill_vilgalys_garcia_cook_2024, title={Fungal biomass and ectomycorrhizal community assessment of phosphorus responsive Pinus taeda plantations}, volume={5}, ISSN={["2673-6128"]}, DOI={10.3389/ffunb.2024.1401427}, abstractNote={Ectomycorrhizal fungi and non-ectomycorrhizal fungi are responsive to changes in environmental and nutrient availabilities. Although many species of ectomycorrhizas are known to enhance the uptake of phosphorus and other nutrients for Pinus taeda , it is not understood how to optimize these communities to have tangible effects on plantation silviculture and P use efficiency. The first step of this process is the identification of native fungi present in the system that are associated with P. taeda and influence P uptake efficiency. We used sand-filled mesh bags baited with finely ground apatite to sample ectomycorrhizal and non-ectomycorrhizal fungi associated with the rhizosphere of P-responsive P. taeda under several field conditions. Mesh bags were assessed for biomass accumulation over three years using a single three-month burial period pre-harvest and three six-month burial periods post-planting. Amplicon sequencing assessed ectomycorrhizal and non-ectomycorrhizal communities between phosphorus treatments, sites, mesh bags, and the rhizosphere of actively growing P. taeda in the field. We found biomass accumulation within the mesh bags was inversely related to increasing phosphorus fertilization (carryover) rates from pre-harvest to post-planting. Up to 25% increases in total biomass within the bags were observed for bags baited with P. Taxonomic richness was highest in Alfisol soils treated with phosphorus from the previous rotation and lowest in the Spodosol regardless of phosphorus treatment.}, journal={FRONTIERS IN FUNGAL BIOLOGY}, author={Hackman, Jacob and Woodley, Alex and Carter, David and Strahm, Brian and Averill, Collin and Vilgalys, Rytas and Garcia, Kevin and Cook, Rachel}, year={2024}, month={May} } @article{hackman_cook_strahm_carter_woodley_garcia_2024, title={Using microdialysis to assess soil diffusive P and translocated sap flow P concentrations in Southern Pinus taeda plantations}, volume={1}, ISSN={["1573-5036"]}, DOI={10.1007/s11104-023-06468-8}, journal={PLANT AND SOIL}, author={Hackman, Jacob and Cook, Rachel and Strahm, Brian and Carter, David and Woodley, Alex and Garcia, Kevin}, year={2024}, month={Jan} } @article{rubilar_bozo_albaugh_cook_campoe_carter_allen_alvarez_pincheira_zapata_2023, title={Rotation-age effects of subsoiling, fertilization, and weed control on radiata pine growth at sites with contrasting soil physical, nutrient, and water limitations}, volume={544}, ISSN={["1872-7042"]}, DOI={10.1016/j.foreco.2023.121213}, abstractNote={Although short- and medium-term responses to early silvicultural treatments have been documented, few studies show productivity gains or losses throughout a rotation across a range of soil types and resource availability. We evaluated the rotation length productivity responses of radiata pine to subsoiling, fertilization, and weed control in dry sand (DS), red clay (RC), and recent volcanic ash (RV) soils representing a gradient of physical, nutrient, and water limitations. Stands were planted in 2000 in a split-plot factorial design, with soil preparation (subsoiling vs. shovel planting) as the main plot and fertilization at planting (B only vs. NPKB) and weed control (none vs. 2-year banded application) as factorial randomized treatment plots within the main plots. Annual diameter at breast height, height, survival, and cumulative volume responses were measured. The rotation-age results for cumulative volume showed that early gains from weed control were maintained through at least 15 years of age. At rotation age, weed control increased the cumulative volume at the DS site (56 m3/ha, 20% gain), and the response over time was maintained at the RC site (28 m3/ha, 8% gain), whereas the volume was reduced at the RV site (-36 m3/ha, 7% loss). Fertilization resulted in the greatest response at the RC site (29 m3/ha, 8% gain); there were small responses at the DS site (5 m3/ha, 2% gain) and negative responses at the RV site (-18 m3/ha, 4% loss). Interestingly, subsoiling resulted in null or negative responses at all sites, and negative effects increased over time, with volume responses ranging from −4 m3/ha (1% loss) and −27 m3/ha (7% loss) at the DS and RC sites, respectively, to −116 m3/ha (21% loss) at the RV site. Carrying capacity was reached at mid-rotation at the RV site and resulted in negative treatment effects at rotation age, suggesting the need for thinning or a younger harvest age at this site. Given the negative or null effects of soil preparation, a better understanding is needed for how this silvicultural treatment is affected by soil type and soil strength.}, journal={FOREST ECOLOGY AND MANAGEMENT}, author={Rubilar, Rafael and Bozo, Daniel and Albaugh, Timothy and Cook, Rachel and Campoe, Otavio and Carter, David and Allen, H. Lee and Alvarez, Jose and Pincheira, Matias and Zapata, Alvaro}, year={2023}, month={Sep} } @article{albaugh_albaugh_carter_cook_cohrs_rubilar_campoe_2021, title={Duration of response to nitrogen and phosphorus applications in mid-rotation Pinus taeda}, volume={498}, ISSN={["1872-7042"]}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-85112486933&partnerID=MN8TOARS}, DOI={10.1016/j.foreco.2021.119578}, abstractNote={We quantified the response duration to one-time applications of 112, 224, and 336 kg ha−1 of elemental nitrogen (112 N, 224 N, and 336 N, respectively) combined with 28 or 56 kg ha−1 of elemental phosphorus in mid-rotation Pinus taeda L. stands. Post-application measurements continued for 10 years at 32 sites in the southeastern United States and one site in Argentina, and we fit a Ricker model to data from each treatment in the event that a zero growth response was not observed in our measured data. The response duration was eight (measured), 14 (modeled), and 16 (modeled) years after treatment for the respective 112 N, 224 N, and 336 N treatments. The corresponding growth response per unit of applied nitrogen estimated from fertilization to when the growth response was not different from zero (whether measured or modeled) was 0.20, 0.16, and 0.13 m3 kg−1 for the 112 N, 224 N, and 336 N treatments, respectively. We hypothesized that the mechanism controlling the response duration was related to the amount of fertilizer nitrogen remaining in the foliage over time after treatment; previous studies found that nitrogen application had large impacts on the foliage amount and foliar nitrogen content. Based on retranslocation rate estimates from the literature of 67% of fertilizer nitrogen per year, our results suggest that a good correlation exists between the growth response and the amount of fertilizer nitrogen remaining in the foliage.}, journal={FOREST ECOLOGY AND MANAGEMENT}, author={Albaugh, Timothy J. and Albaugh, Janine M. and Carter, David R. and Cook, Rachel L. and Cohrs, Chris W. and Rubilar, Rafael A. and Campoe, Otavio C.}, year={2021}, month={Oct} } @article{grover_cook_zapata_urrego_albaugh_zelaya_ozyhar_rubilar_carter_campoe_2021, title={Eucalyptus grandis Response to Calcium Fertilization in Colombia}, volume={67}, ISSN={["1938-3738"]}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-85121035283&partnerID=MN8TOARS}, DOI={10.1093/forsci/fxab042}, abstractNote={Abstract}, number={6}, journal={FOREST SCIENCE}, author={Grover, Zach S. and Cook, Rachel L. and Zapata, Marcela and Urrego, J. Byron and Albaugh, Timothy J. and Zelaya, Ariel and Ozyhar, Tomasz and Rubilar, Rafael and Carter, David R. and Campoe, Otavio C.}, year={2021}, month={Dec}, pages={701–710} } @article{brito_rubilar_cook_campoe_carter_mardones_2021, title={Evaluating remote sensing indices as potential productivity and stand quality indicators for Pinus radiata plantations}, volume={49}, ISSN={["1413-9324"]}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-85104990073&partnerID=MN8TOARS}, DOI={10.18671/scifor.v49n129.08}, abstractNote={The objective of the present research was to evaluate the use of several spectral vegetation indices (SVIs), including NDVI, SAVI, SR and RSR, obtained from Landsat 7 images, as potential predictors of forest productivity of radiata pine stands. We aimed to evaluate relationships between the variations in stand volume and SVIs over time and the effect of early weed control on stand growth response. We evaluated a large-scale silviculture experiment located at the Central Valley of Chile, since its establishment until 12 years of age, where weed control showed to be the major silvicultural response. Forest inventory measurements were made annually and local equations were used to estimate stand volume. Significant and highly significant correlation was found among SVI ́s and stand productivity parameters. The best relationship was found between NDVI and stand cumulative volume (R-adj=0.92, p-value < 0.0001, RMSE= 0.03), but SR and RSR were able to better track productivity and the major weed control effect on stand volume growth over time. SVIs’ coefficient of variation estimates were correlated with estimates of stand productivity variability but no significant relationships were established to provide an index of stand quality due to the sensor spatial resolution and plot sizes. SVIs may serve as important tools to monitor forest growth and high-resolution imagery may provide valuable estimates of stand variability for inventory assessment or as a support tool for growth and yield models.}, number={129}, journal={SCIENTIA FORESTALIS}, author={Brito, Vitor Vannozzi and Rubilar, Rafael Alejandro and Cook, Rachel Louise and Campoe, Otavio Camargo and Carter, David Robert and Mardones, Oscar}, year={2021}, month={Mar} } @article{trlica_cook_albaugh_parajuli_carter_rubilar_2021, title={Financial Returns for Biomass on Short-Rotation Loblolly Pine Plantations in the Southeastern United States}, volume={67}, ISSN={["1938-3738"]}, url={https://doi.org/10.1093/forsci/fxab033}, DOI={10.1093/forsci/fxab033}, abstractNote={Abstract}, number={6}, journal={FOREST SCIENCE}, publisher={Oxford University Press (OUP)}, author={Trlica, Andrew and Cook, Rachel L. and Albaugh, Timothy J. and Parajuli, Rajan and Carter, David R. and Rubilar, Rafael A.}, year={2021}, month={Dec}, pages={670–681} } @article{albaugh_maier_campoe_yanez_carbaugh_carter_cook_rubilar_fox_2020, title={Crown architecture, crown leaf area distribution, and individual tree growth efficiency vary across site, genetic entry, and planting density}, volume={34}, ISSN={["1432-2285"]}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-85071645632&partnerID=MN8TOARS}, DOI={10.1007/s00468-019-01898-3}, abstractNote={We examined crown architecture and within crown leaf area distribution effects on Pinus taeda L. growth in North Carolina (NC), Virginia (VA), and Brazil (BR) to better understand why P. taeda can grow much better in Brazil than in the southeastern United States. The NC, VA, and BR sites were planted in 2009, 2009, and 2011, respectively. At all sites, we planted the same two genetic entries at 618, 1236, and 1854 trees ha−1. In 2013, when trees were still open grown, the VA and NC sites had greater branch diameter (24%), branch number (14%), live crown length (44%), foliage mass (82%), and branch mass (91%), than the BR site. However, in 2017, after crown closure and when there was no significant difference in tree size, site did not significantly affect these crown variables. In 2013, site significantly affected absolute leaf area distribution, likely due to differences in live crown length and leaf area, such that there was more foliage at a given level in the crown at the VA and NC sites than at the BR site. In 2017, site was still a significant factor explaining leaf area distribution, although at this point, with crown closure and similar sized trees, there was more foliage at the BR site at a given level in the crown compared to the VA and NC sites. In 2013 and 2017, when including site, genetic entry, stand density, and leaf area distribution parameters as independent variables, site significantly affected individual tree growth efficiency, indicating that something other than leaf area distribution was influencing the site effect. Better BR P. taeda growth is likely due to a combination of factors, including leaf area distribution, crown architecture, and other factors that have been identified as influencing the site effect (heat sum), indicating that future work should include a modeling analysis to examine all known contributing factors.}, number={1}, journal={TREES-STRUCTURE AND FUNCTION}, author={Albaugh, Timothy J. and Maier, Chris A. and Campoe, Otavio C. and Yanez, Marco A. and Carbaugh, Eric D. and Carter, David R. and Cook, Rachel L. and Rubilar, Rafael A. and Fox, Thomas R.}, year={2020}, month={Feb}, pages={73–88} } @article{schulte_cook_albaugh_allen_rubilar_pezzutti_lucia caldato_campoe_carter_2020, title={Mid-rotation response of Pinus taeda to early silvicultural treatments in subtropical Argentina}, volume={473}, ISSN={["1872-7042"]}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-85086739488&partnerID=MN8TOARS}, DOI={10.1016/j.foreco.2020.118317}, abstractNote={Pinus taeda plantations in subtropical areas of South America are extremely productive and commonly established on well-drained red clay sites. In the past, land with more poorly-drained soil was avoided due to concern over the factors limiting site productivity. Establishment of intensively managed plantations on poorly-drained soils usually includes soil preparation by subsoiling and/or bedding, weed control, and fertilization. However, forest managers lack information about the efficacy of early silvicultural practices to ameliorate environmental limitations and if these intensive practices generate long-term improvements in productivity in this area. Consequently, we established studies in northeastern Argentina on two sites differing by drainage class and soil texture as a full factorial design with site preparation (S; disking and disking + subsoiling (red clay) or bedding (wet loam)), fertilization (F; none or 78 kg ha−1 elemental phosphorus at planting), and weed control (W; none or two-year banded). Seven years after planting, the red clay and wet loam sites were equally productive, with maximum treatment means of 218 m3 ha−1 and 264 m3 ha−1 respectively. At the red clay site, only weed control significantly increased volume. At the wet loam site, both weed control and site preparation significantly increased volume, mainly due to increased survival. The combination of weed control and bedding yielded a non-additive volume response as indicated by a significant W*S interaction. Our results do not support the common practice of subsoiling on red clay soils. In addition, fertilization with P alone appears counterproductive or unneeded at both sites.}, journal={FOREST ECOLOGY AND MANAGEMENT}, author={Schulte, Morgan L. and Cook, Rachel L. and Albaugh, Timothy J. and Allen, H. Lee and Rubilar, Rafael A. and Pezzutti, Raul and Lucia Caldato, Silvana and Campoe, Otavio and Carter, David R.}, year={2020}, month={Oct} }