Douglas Call Algurainy, Y., & Call, D. F. (2024). Cathodic precipitation of calcium carbonate and its impact on the electrosorption of sodium in flow-through capacitive deionization. DESALINATION, 586. https://doi.org/10.1016/j.desal.2024.117853 Ding, H., & Call, D. F. (2024, June 25). Intermittent Heat Shocks Can Reduce Methanogenesis and Increase Generation of Longer-Chain Volatile Fatty Acids in Anaerobic Bioreactors. ACS ES&T ENGINEERING. https://doi.org/10.1021/acsestengg.4c00090 Merck, A. W., Deaver, J. A., Crane, L., Morrison, E. S., Call, D. F., Boyer, T. H., … Grieger, K. (2024, August 13). Stakeholder Views of Science and Technologies for Phosphorus Sustainability: A Comparative Analysis of Three Case Studies in Phosphorus Recovery in the US. SOCIETY & NATURAL RESOURCES, Vol. 8. https://doi.org/10.1080/08941920.2024.2389806 Ortiz-Medina, J. F., Poole, M. R., Grunden, A. M., & Call, D. F. (2023, March 28). Nitrogen Fixation and Ammonium Assimilation Pathway Expression of Geobacter sulfurreducens Changes in Response to the Anode Potential in Microbial Electrochemical Cells. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Vol. 3. https://doi.org/10.1128/aem.02073-22 McLamore, E., Duckworth, O., Boyer, T. H., Marshall, A.-M., Call, D. F., Bhadha, J. H., & Guzman, S. (2023). Perspective: Phosphorus monitoring must be rooted in sustainability frameworks spanning material scale to human scale. WATER RESEARCH X, 19. https://doi.org/10.1016/j.wroa.2023.100168 Mallick, S. P., Hossain, M. S., Takshi, A., Call, D. F., & Mayer, B. K. (2023). The challenge of non-reactive phosphorus: Mechanisms of treatment and improved recoverability using electrooxidation. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 11(5). https://doi.org/10.1016/j.jece.2023.110295 Ding, H., Barlaz, M. A., de los Reyes III, F. L., & Call, D. F. (2022, December 9). Influence of Inoculum Type on Volatile Fatty Acid and Methane Production in Short-Term Anaerobic Food Waste Digestion Tests. ACS SUSTAINABLE CHEMISTRY & ENGINEERING, Vol. 12. https://doi.org/10.1021/acssuschemeng.2c04080 Zhi, Y., Paterson, A. R., Call, D. F., Jones, J. L., Hesterberg, D., Duckworth, O. W., … Knappe, D. R. U. (2022). Mechanisms of orthophosphate removal from water by lanthanum carbonate and other lanthanum-containing materials. SCIENCE OF THE TOTAL ENVIRONMENT, 820. https://doi.org/10.1016/j.scitotenv.2022.153153 Cheng, Q., & Call, D. F. (2021). Developing microbial communities containing a high abundance of exoelectrogenic microorganisms using activated carbon granules. SCIENCE OF THE TOTAL ENVIRONMENT, 768. https://doi.org/10.1016/j.scitotenv.2020.144361 De la Cruz, F. B., Cheng, Q., Call, D. F., & Barlaz, M. A. (2021). Evidence of thermophilic waste decomposition at a landfill exhibiting elevated temperature regions. Waste Management, 124, 26–35. https://doi.org/10.1016/j.wasman.2021.01.014 Algurainy, Y., & Call, D. F. (2022). Improving Long-Term Anode Stability in Capacitive Deionization Using Asymmetric Electrode Mass Ratios. ACS ES&T ENGINEERING, 2(1), 129–139. https://doi.org/10.1021/acsestengg.1c00348 Zhi, Y., Call, D. F., Grieger, K. D., Duckworth, O. W., Jones, J. L., & Knappe, D. R. U. (2021). Influence of natural organic matter and pH on phosphate removal by and filterable lanthanum release from lanthanum-modified bentonite. Water Research, 202, 117399. https://doi.org/10.1016/j.watres.2021.117399 Algurainy, Y., & Call, D. F. (2020). Asymmetrical removal of sodium and chloride in flow-through capacitive deionization. WATER RESEARCH, 183. https://doi.org/10.1016/j.watres.2020.116044 Liu, F., Coronell, O., & Call, D. F. (2020). Effect of cross-chamber flow electrode recirculation on pH and faradaic reactions in capacitive deionization. DESALINATION, 492. https://doi.org/10.1016/j.desal.2020.114600 Zhi, Y., Zhang, C., Hjorth, R., Baun, A., Duckworth, O. W., Call, D. F., … Grieger, K. (2020). [Review of Emerging lanthanum (III)-containing materials for phosphate removal from water: A review towards future developments]. ENVIRONMENT INTERNATIONAL, 145. https://doi.org/10.1016/j.envint.2020.106115 Schupp, S., De la Cruz, F. B., Cheng, Q., Call, D. F., & Barlaz, M. A. (2020). Evaluation of the Temperature Range for Biological Activity in Landfills Experiencing Elevated Temperatures. ACS ES&T Engineering, 1(2), 216–227. https://doi.org/10.1021/acsestengg.0c00064 Mueller, K. E., Thomas, J. T., Johnson, J. X., DeCarolis, J. F., & Call, D. F. (2021). Life cycle assessment of salinity gradient energy recovery using reverse electrodialysis. JOURNAL OF INDUSTRIAL ECOLOGY, 25(5), 1194–1206. https://doi.org/10.1111/jiec.13082 Hossen, E. H., Gobetz, Z. E., Kingsbury, R. S., Liu, F., Palko, H. C., Dubbs, L. L., … Call, D. F. (2020). Temporal variation of power production via reverse electrodialysis using coastal North Carolina waters and its correlation to temperature and conductivity. DESALINATION, 491. https://doi.org/10.1016/j.desal.2020.114562 Ortiz-Medina, J. F., & Call, D. F. (2019). Electrochemical and Microbiological Characterization of Bioanode Communities Exhibiting Variable Levels of Startup Activity. FRONTIERS IN ENERGY RESEARCH, 7. https://doi.org/10.3389/fenrg.2019.00103 Ortiz-Medina, J. F., Grunden, A. M., Hyman, M. R., & Call, D. F. (2019). Nitrogen Gas Fixation and Conversion to Ammonium Using Microbial Electrolysis Cells. ACS Sustainable Chemistry & Engineering, 7(3), 3511–3519. https://doi.org/10.1021/acssuschemeng.8b05763 Cheng, Q., de los Reyes, F. L., & Call, D. F. (2018). Amending anaerobic bioreactors with pyrogenic carbonaceous materials: the influence of material properties on methane generation. Environmental Science: Water Research & Technology, 4(11), 1794–1806. https://doi.org/10.1039/c8ew00447a Zhu, S., Kingsbury, R. S., Call, D. F., & Coronell, O. (2018). Impact of solution composition on the resistance of ion exchange membranes. JOURNAL OF MEMBRANE SCIENCE, 554, 39–47. https://doi.org/10.1016/j.memsci.2018.02.050 Kingsbury, R. S., Flotron, S., Zhu, S., Call, D. F., & Coronell, O. (2018). Junction Potentials Bias Measurements of Ion Exchange Membrane Permselectivity. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 52(8), 4929–4936. https://doi.org/10.1021/acs.est.7b05317 Liu, F., Coronell, O., & Call, D. F. (2017). Electricity generation using continuously recirculated flow electrodes in reverse electrodialysis. Journal of Power Sources, 355, 206–210. https://doi.org/10.1016/j.jpowsour.2017.04.061 Kingsbury, R. S., Liu, F., Zhu, S., Boggs, C., Armstrong, M. D., Call, D. F., & Coronell, O. (2017). Impact of natural organic matter and inorganic solutes on energy recovery from five real salinity gradients using reverse electrodialysis. JOURNAL OF MEMBRANE SCIENCE, 541, 621–632. https://doi.org/10.1016/j.memsci.2017.07.038 Siegert, M., Yates, M. D., Call, D. F., Zhu, X., Spormann, A., & Logan, B. E. (2016). Correction to Comparison of Nonprecious Metal Cathode Materials for Methane Production by Electromethanogenesis. ACS Sustainable Chemistry & Engineering, 4(9), 5088–5088. https://doi.org/10.1021/ACSSUSCHEMENG.6B01763 Cheng, Q., & Call, D. F. (2016). [Review of Hardwiring microbes via direct interspecies electron transfer: mechanisms and applications]. ENVIRONMENTAL SCIENCE-PROCESSES & IMPACTS, 18(8), 968–980. https://doi.org/10.1039/c6em00219f Hartline, R. M., & Call, D. F. (2016). Substrate and electrode potential affect electrotrophic activity of inverted bioanodes. BIOELECTROCHEMISTRY, 110, 13–18. https://doi.org/10.1016/j.bioelechem.2016.02.010 Fraiwan, A., Call, D. F., & Choi, S. (2014). Bacterial growth and respiration in laminar flow microbial fuel cells. Journal of Renewable and Sustainable Energy, 6(2), 023125. https://doi.org/10.1063/1.4873399 Siegert, M., Yates, M. D., Call, D. F., Zhu, X., Spormann, A., & Logan, B. E. (2014). Comparison of Nonprecious Metal Cathode Materials for Methane Production by Electromethanogenesis. ACS Sustainable Chemistry & Engineering, 2(4), 910–917. https://doi.org/10.1021/sc400520x Sun, D., Call, D., Wang, A., Cheng, S., & Logan, B. E. (2014). Geobacter sp SD-1 with enhanced electrochemical activity in high-salt concentration solutions. ENVIRONMENTAL MICROBIOLOGY REPORTS, 6(6), 723–729. https://doi.org/10.1111/1758-2229.12193 Fraiwan, A., Adusumilli, S. P., Han, D., Steckl, A. J., Call, D. F., Westgate, C. R., & Choi, S. (2014). Microbial Power-Generating Capabilities on Micro-/Nano-Structured Anodes in Micro-SizedMicrobial Fuel Cells. FUEL CELLS, 14(6), 801–809. https://doi.org/10.1002/fuce.201400041 Zhang, F., Xia, X., Luo, Y., Sun, D., Call, D. F., & Logan, B. E. (2013). Improving startup performance with carbon mesh anodes in separator electrode assembly microbial fuel cells. Bioresource Technology, 133, 74–81. https://doi.org/10.1016/j.biortech.2013.01.036 Yates, M. D., Kiely, P. D., Call, D. F., Rismani-Yazdi, H., Bibby, K., Peccia, J., … Logan, B. E. (2012). Convergent development of anodic bacterial communities in microbial fuel cells. The ISME Journal, 6(11), 2002–2013. https://doi.org/10.1038/ismej.2012.42 Pisciotta, J. M., Zaybak, Z., Call, D. F., Nam, J.-Y., & Logan, B. E. (2012). Enrichment of Microbial Electrolysis Cell Biocathodes from Sediment Microbial Fuel Cell Bioanodes. Applied and Environmental Microbiology, 78(15), 5212–5219. https://doi.org/10.1128/aem.00480-12 Call, D. F., & Logan, B. E. (2011). A method for high throughput bioelectrochemical research based on small scale microbial electrolysis cells. Biosensors and Bioelectronics, 26(11), 4526–4531. https://doi.org/10.1016/j.bios.2011.05.014 Hong, Y., Call, D. F., Werner, C. M., & Logan, B. E. (2011). Adaptation to high current using low external resistances eliminates power overshoot in microbial fuel cells. Biosensors and Bioelectronics, 28(1), 71–76. https://doi.org/10.1016/j.bios.2011.06.045 Kiely, P. D., Cusick, R., Call, D. F., Selembo, P. A., Regan, J. M., & Logan, B. E. (2011). Anode microbial communities produced by changing from microbial fuel cell to microbial electrolysis cell operation using two different wastewaters. Bioresource Technology, 102(1), 388–394. https://doi.org/10.1016/j.biortech.2010.05.019 Liu, G., Yates, M. D., Cheng, S., Call, D. F., Sun, D., & Logan, B. E. (2011). Examination of microbial fuel cell start-up times with domestic wastewater and additional amendments. Bioresource Technology, 102(15), 7301–7306. https://doi.org/10.1016/j.biortech.2011.04.087 Call, D. F., & Logan, B. E. (2011). Lactate Oxidation Coupled to Iron or Electrode Reduction by Geobacter sulfurreducens PCA. Applied and Environmental Microbiology, 77(24), 8791–8794. https://doi.org/10.1128/aem.06434-11 Sun, D., Call, D. F., Kiely, P. D., Wang, A., & Logan, B. E. (2011). Syntrophic interactions improve power production in formic acid fed MFCs operated with set anode potentials or fixed resistances. Biotechnology and Bioengineering, 109(2), 405–414. https://doi.org/10.1002/bit.23348 Kiely, P. D., Call, D. F., Yates, M. D., Regan, J. M., & Logan, B. E. (2010). Anodic biofilms in microbial fuel cells harbor low numbers of higher-power-producing bacteria than abundant genera. Applied Microbiology and Biotechnology, 88(1), 371–380. https://doi.org/10.1007/s00253-010-2757-2 Mehanna, M., Kiely, P. D., Call, D. F., & Logan, B. E. (2010). Microbial Electrodialysis Cell for Simultaneous Water Desalination and Hydrogen Gas Production. Environmental Science & Technology, 44(24), 9578–9583. https://doi.org/10.1021/es1025646 Wagner, R. C., Call, D. F., & Logan, B. E. (2010). Optimal Set Anode Potentials Vary in Bioelectrochemical Systems. Environmental Science & Technology, 44(16), 6036–6041. https://doi.org/10.1021/es101013e Cheng, S., Xing, D., Call, D. F., & Logan, B. E. (2009). Direct Biological Conversion of Electrical Current into Methane by Electromethanogenesis. Environmental Science & Technology, 43(10), 3953–3958. https://doi.org/10.1021/es803531g Call, D. F., Merrill, M. D., & Logan, B. E. (2009). High Surface Area Stainless Steel Brushes as Cathodes in Microbial Electrolysis Cells. Environmental Science & Technology, 43(6), 2179–2183. https://doi.org/10.1021/es803074x Call, D. F., Wagner, R. C., & Logan, B. E. (2009). Hydrogen Production by Geobacter Species and a Mixed Consortium in a Microbial Electrolysis Cell. Applied and Environmental Microbiology, 75(24), 7579–7587. https://doi.org/10.1128/aem.01760-09 Call, D., & Logan, B. E. (2008). Hydrogen Production in a Single Chamber Microbial Electrolysis Cell Lacking a Membrane. Environmental Science & Technology, 42(9), 3401–3406. https://doi.org/10.1021/es8001822 Logan, B. E., Call, D., Cheng, S., Hamelers, H. V. M., Sleutels, T. H. J. A., Jeremiasse, A. W., & Rozendal René A. (2008). Microbial Electrolysis Cells for High Yield Hydrogen Gas Production from Organic Matter. Environmental Science & Technology, 42(23), 8630–8640. https://doi.org/10.1021/es801553z Zuo, Y., Cheng, S., Call, D., & Logan, B. E. (2007). Tubular Membrane Cathodes for Scalable Power Generation in Microbial Fuel Cells. Environmental Science & Technology, 41(9), 3347–3353. https://doi.org/10.1021/es0627601