Dieter Griffis Maheshwari, P., Stevie, F. A., Myneni, G. R., Ciovati, G., Rigsbee, J. M., Dhakal, P., & Griffis, D. P. (2014). SIMS analysis of high-performance accelerator niobium. Surface and Interface Analysis, 46, 288–290. https://doi.org/10.1002/sia.5461 Stevie, F. A., Maheshwari, P., Pierce, J. M., Adekore, B. T., & Griffis, D. P. (2013). SIMS analysis of zinc oxide LED structures: quantification and analysis issues. Surface and Interface Analysis, 45(1), 352–355. https://doi.org/10.1002/sia.4919 Penley, C., Stevie, F. A., & Griffis, D. P. (2012). Quantification of cesium surface contamination on silicon resulting from SIMS analysis. Journal of Vacuum Science & Technology. B, Microelectronics and Nanometer Structures, 30(3). https://doi.org/10.1116/1.3698400 Zhou, C. Z., Li, M., Garcia, R., Crawford, A., Beck, K., Hinks, D., & Griffis, D. P. (2012). Time-of-flight-secondary ion mass spectrometry method development for high-sensitivity analysis of acid dyes in nylon fibers. Analytical Chemistry, 84(22), 10085–10090. https://doi.org/10.1021/ac3025569 Maheshwari, P., Stevie, F. A., Myeneni, G., Ciovati, G., Rigsbee, J. M., & Griffis, D. P. (2011). Analysis of interstitial elements in niobium with secondary ion mass spectrometry (SIMS). International symposium on the superconducting science & technology of ingot niobium, 1352, 151–160. https://doi.org/10.1063/1.3579233 Zhou, C. Z., Li, Q. Z., Chiang, V. L., Lucia, L. A., & Griffis, D. P. (2011). Chemical and spatial differentiation of syringyl and guaiacyl lignins in poplar wood via time-of-flight secondary ion mass spectrometry. Analytical Chemistry, 83(18), 7020–7026. https://doi.org/10.1021/ac200903y Maheshwari, P., Tian, H., Reece, C. E., Kelley, M. J., Myneni, G. R., Stevie, F. A., … Griffis, D. P. (2011). Surface analysis of Nb materials for SRF cavities. Surface and Interface Analysis, 43(1-2), 151–153. https://doi.org/10.1002/sia.3513 Wong, K. C., Haslauer, C. M., Anantharamaiah, N., Pourdeyhimi, B., Batchelor, A. D., & Griffis, D. P. (2010). Focused ion beam characterization of bicomponent polymer fibers. Microscopy and Microanalysis, 16(3), 282–290. https://doi.org/10.1017/s1431927610000115 Ciovati, G., Myneni, G., Stevie, F., Maheshwari, P., & Griffis, D. (2010). High field Q slope and the baking effect: Review of recent experimental results and new data on Nb heat treatments. Physical Review Special Topics. Accelerators and Beams, 13(2). https://doi.org/10.1103/physrevstab.13.022002 Penley, C., Stevie, F. A., Griffis, D. P., Siebel, S., Kulig, L., & Lee, J. (2010). Secondary ion mass spectrometry characterization of anomalous behavior for low dose ion implanted phosphorus in silicon. Journal of Vacuum Science & Technology. B, Microelectronics and Nanometer Structures, 28(3), 511–516. https://doi.org/10.1116/1.3406141 Zhu, Z. M., Stevie, F. A., & Griffis, D. P. (2008). Model study of electron beam charge compensation for positive secondary ion mass spectrometry using a positive primary ion beam. Applied Surface Science, 254(9), 2708–2711. https://doi.org/10.1016/j.apsusc.2007.10.008 Stevie, F. A., & Griffis, D. P. (2008). Quantification in dynamic SIMS: Current status and future needs. Applied Surface Science, 255(4), 1364–1367. https://doi.org/10.1016/j.apsusc.2008.05.041 Zhu, Z., Gu, C., Stevie, F. A., & Griffis, D. P. (2007). Improved understanding of an electron beam charge compensation method for magnetic sector secondary ion mass spectrometer analysis of insulators. Journal of Vacuum Science & Technology. A, Vacuum, Surfaces, and Films, 25(4), 769–774. https://doi.org/10.1116/1.2746044 Harton, S. E., Zhu, Z. M., Stevie, F. A., Griffis, D. P., & Ade, H. (2007). Mass fractionation of carbon and hydrogen secondary ions upon Cs+ and O-2(+) bombardment of organic materials. Journal of Vacuum Science & Technology. A, Vacuum, Surfaces, and Films, 25(3), 480–484. https://doi.org/10.1116/1.2718957 A.D. Garetto, R. R. G., A.D. Batchelor, C. L. P., Griffis, D. P., P.E., & Russell. (2007). Transferable Internal Reservoir Device for Electron and Ion Beam Induced Chemistry. Microscopy and Analysis, 86, 5–6. Gu, C., Stevie, F. A., Bennett, J., Garcia, R., & Griffis, D. P. (2006). Back side SIMS analysis of hafnium silicate. Applied Surface Science, 252(19), 7179–7181. https://doi.org/10.1016/j.apsusc.2006.02.099 Harton, S. E., Stevie, F. A., Griffis, D. P., & Ade, H. (2006). SIMS depth profiling of deuterium labeled polymers in polymer multilayers. Applied Surface Science, 252(19), 7224–7227. https://doi.org/10.1016/j.apsusc.2006.02.146 Gu, C. J., Stevie, F. A., Hitzman, C. J., Saripalli, Y. N., Johnson, M., & Griffis, D. P. (2006). SIMS quantification of matrix and impurity species in AlxGa1-xN. Applied Surface Science, 252(19), 7228–7231. https://doi.org/10.1016/j.apsusc.2006.02.148 Sivasubramani, P., Lee, T. H., Kim, M. J., Kim, J., Gnade, B. E., Wallace, R. M., … Griffis, D. P. (2006). Thermal stability of lanthanum scandate dielectrics on Si(100). Applied Physics Letters, 89(24). https://doi.org/10.1063/1.2405418 Mosselveld, F., Makarov, V. V., Lundquist, T. R., Griffis, D. P., & Russell, P. E. (2004). Circuit editing of copper and low-k dielectrics in nanotechnology devices. Journal of Microscopy, 214(2004 Jun), 246–251. https://doi.org/10.1111/j.0022-2720.2004.01337.x Pivovarov, A. L., Stevie, F. A., & Griffis, D. P. (2004). Improved charge neutralization method for depth profiling of bulk insulators using O-2(+) primary beam on a magnetic sector SIMS instrument. Applied Surface Science, 231-232(2004 June 15), 786–790. https://doi.org/10.1016/j.apsusc.2004.03.070 Kachan, M., Hunter, J., Kouzminov, D., Pivovarov, A., Gu, J., Stevie, F., & Griffis, D. (2004). O-2(+) versus Cs+ for high depth resolution depth profiling of III-V nitride-based semiconductor devices. Applied Surface Science, 231-232(2004 June 15), 684–687. https://doi.org/10.1016/j.apsusc.2004.03.211 Gu, C., Pivovarov, A., Garcia, R., Stevie, F., Griffis, D., Moran, J., … Richards, J. F. (2004). Secondary ion mass spectrometry backside analysis of barrier layers for copper diffusion. Journal of Vacuum Science & Technology. B, Microelectronics and Nanometer Structures, 22(1), 350–354. https://doi.org/10.1116/1.1617278 Gu, C., Garcia, R., Pivovarov, A., Stevie, F., & Griffis, D. (2004). Site-specific SIMS backside analysis. Applied Surface Science, 231-232(2004 June 15), 663–667. https://doi.org/10.1016/j.apsusc.2004.03.140 Pivovarov, A., Gu, C., Stevie, F., & Griffis, D. (2004). Utilization of electron impact ionization of gaseous and sputtered species in the secondary ion acceleration region of a magnetic sector SIMS instrument. Applied Surface Science, 231-232(2004 June 15), 781–785. https://doi.org/10.1016/j.apsusc.2004.03.069 Russell, P. E., Griffis, D. P., & Gonzales Perez, J. C. (2003). Chemically enhanced focused ion beam micro-machining of copper. Washington, DC: U.S. Patent and Trademark Office. Wang, J. H., Griffis, D. P., Garcia, R., & Russell, P. E. (2003). Etching characteristics of chromium thin films by an electron beam induced surface reaction. Semiconductor Science and Technology, 18(4), 199–205. https://doi.org/10.1088/0268-1242/18/4/302 Pivovarov, A. L., Stevie, F. A., Griffis, D. P., & Guryanov, G. M. (2003). Optimization of secondary ion mass spectrometry detection limit for N in SiC. Journal of Vacuum Science & Technology. A, Vacuum, Surfaces, and Films, 21(5), 1649–1654. https://doi.org/10.1116/1.1595108 Loesing, R., Guryanov, G. M., Phillips, M. S., & Griffis, D. P. (2002). Comparison of secondary ion mass spectroscopy analysis of ultrashallow phosphorus using Cs+, O-2(+), and CsC6- primary ion beams. Journal of Vacuum Science & Technology. B, Microelectronics and Nanometer Structures, 20(2), 507–511. https://doi.org/10.1116/1.1450588 Gonzalez, J. C., Da Silva, M. I. N., Griffis, D. P., & Russell, P. E. (2002). Improvements in focused ion beam micromachining of interconnect materials. Journal of Vacuum Science & Technology. B, Microelectronics and Nanometer Structures, 20(6), 2700–2704. https://doi.org/10.1116/1.1515310 Gonzalez, J. C., Griffis, D. P., Miau, T. T., & Russell, P. E. (2001). Chemically enhanced focused ion beam micromachining of copper. Journal of Vacuum Science & Technology. B, Microelectronics and Nanometer Structures, 19(6), 2539–2542. https://doi.org/10.1116/1.1418406 Phillips, J. R., Griffis, D. P., & Russell, P. E. (2000). Channeling effects during focused-ion-beam micromachining of copper. Journal of Vacuum Science & Technology. A, Vacuum, Surfaces, and Films, 18(4), 1061–1065. https://doi.org/10.1116/1.582300 Russell, P. E., Griffis, D. P., Shedd, G. M., Stark, T. J., & Vitarelli, J. (2000). Method for water vapor enhanced charged-particle-beam machining. Washington, DC: U.S. Patent and Trademark Office. Hunter, J. L., Bates, T. B., Patel, S. B., Loesing, R., Guraynov, G., & Griffis, D. P. (2000). Optimization of SIMS analysis conditions for ultra-shallow phosphorus and arsenic implants. In D. B. Williams & R. Shimizu (Eds.), Microbeam Analysis 2000: proceedings of the Second Conference of the International Union of Microbeam Analysis Societies held in Kailua-Kona, Hawaii, 9-14 July 2000 (Vol. 165, pp. 327–328). Bristol: Institute of Physics Publishing. Loesing, R., Guryanov, G. M., Hunter, J. L., & Griffis, D. P. (2000). Secondary ion mass spectrometry depth profiling of ultrashallow phosphorous in silicon. Journal of Vacuum Science & Technology. B, Microelectronics and Nanometer Structures, 18(1), 509–513. https://doi.org/10.1116/1.591222 Russell, P. E., Griffis, D. P., Shedd, G. M., Stark, T. J., & Vitarelli, J. (1999). Method for water vapor enhanced charged-particle-beam machining. Washington, DC: U.S. Patent and Trademark Office. Bremser, M. D., Perry, W. G., Nam, O.-H., Griffis, D. P., Loesing, R., Ricks, D. A., & Davis, R. F. (1998). Acceptor and donor doping of AlxGa1 xN thin film alloys grown on 6H SiC(0001) substrates via metalorganic vapor phase epitaxy. Journal of Electronic Materials, 27(4), 229–232. https://doi.org/10.1007/s11664-998-0392-9 Russell, P. E., Stark, T. J., Griffis, D. P., Phillips, J. R., & Jarausch, K. F. (1998). Chemically and geometrically enhanced focused ion beam micromachining. Journal of Vacuum Science & Technology. B, Microelectronics and Nanometer Structures, 16(4), 2494–2498. https://doi.org/10.1116/1.590197