David Papp Davis, M. M., & Papp, D. (2024). Rational dual certificates for weighted sums-of-squares polynomials with boundable bit size. JOURNAL OF SYMBOLIC COMPUTATION, 121. https://doi.org/10.1016/j.jsc.2023.102254 Torelli, N., Papp, D., & Unkelbach, J. (2023, June 15). Spatiotemporal fractionation schemes for stereotactic radiosurgery of multiple brain metastases. MEDICAL PHYSICS, Vol. 6. https://doi.org/10.1002/mp.16457 Papp, D., Regos, K., Domokos, G., & Bozoki, S. (2023). The smallest mono-unstable convex polyhedron with point masses has 8 faces and 11 vertices. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 310(2), 511–517. https://doi.org/10.1016/j.ejor.2023.04.028 Fabiano, S., Torelli, N., Papp, D., & Unkelbach, J. (2022). A novel stochastic optimization method for handling misalignments of proton and photon doses in combined treatments. PHYSICS IN MEDICINE AND BIOLOGY, 67(18). https://doi.org/10.1088/1361-6560/ac858f Davis, M. M., & Papp, D. (2022). DUAL CERTIFICATES AND EFFICIENT RATIONAL SUM-OF-SQUARES DECOMPOSITIONS FOR POLYNOMIAL OPTIMIZATION OVER COMPACT SETS. SIAM JOURNAL ON OPTIMIZATION, 32(4), 2461–2492. https://doi.org/10.1137/21M1422574 Papp, D. (2023). Duality of sum of nonnegative circuit polynomials and optimal SONC bounds. JOURNAL OF SYMBOLIC COMPUTATION, 114, 246–266. https://doi.org/10.1016/j.jsc.2022.04.015 Papp, D., & Unkelbach, J. (2022, June 26). Technical note: Optimal allocation of limited proton therapy resources using model-based patient selection. MEDICAL PHYSICS, Vol. 6. https://doi.org/10.1002/mp.15812 Papp, D., & Yildiz, S. (2021, September 8). Alfonso: Matlab Package for Nonsymmetric Conic Optimization. INFORMS JOURNAL ON COMPUTING, Vol. 34. https://doi.org/10.1287/ijoc.2021.1058 Papp, D., & Yıldız, S. (2021). Code and Data Repository for alfonso: Matlab Package for Nonsymmetric Conic Optimization. INFORMS Journal on Computing. https://doi.org/10.1287/ijoc.2021.1058.cd Loizeau, N., Fabiano, S., Papp, D., Stuetzer, K., Jakobi, A., Bandurska-Luque, A., … Unkelbach, J. (2021). Optimal Allocation of Proton Therapy Slots in Combined Proton-Photon Radiation Therapy. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 111(1), 196–207. https://doi.org/10.1016/j.ijrobp.2021.03.054 alfonso: Matlab package for nonsymmetric conic optimization. (2021, January 12). Duality of sum of nonnegative circuit polynomials and optimal SONC bounds. (2019, December 10). Gaddy, M. R., Unkelbach, J., & Papp, D. (2019). Robust spatiotemporal fractionation schemes in the presence of patient setup uncertainty. MEDICAL PHYSICS, 46(7), 2988–3000. https://doi.org/10.1002/mp.13593 Papp, D., & Yildiz, S. (2019). SUM-OF-SQUARES OPTIMIZATION WITHOUT SEMIDEFINITE PROGRAMMING. SIAM JOURNAL ON OPTIMIZATION, 29(1), 822–851. https://doi.org/10.1137/17M1160124 Semi-Infinite Programming. (2019). Wiley StatsRef: Statistics Reference Online. https://doi.org/10.1002/9781118445112.stat02391.pub2 Gaddy, M. R., Yildiz, S., Unkelbach, J., & Papp, D. (2018). Optimization of spatiotemporally fractionated radiotherapy treatments with bounds on the achievable benefit. PHYSICS IN MEDICINE AND BIOLOGY, 63(1). https://doi.org/10.1088/1361-6560/aa9975 Unkelbach, J., Papp, D., Gaddy, M., Andratschke, N., Hong, T., & Guckenberger, M. (2018). PO-0900: Spatiotemporal fractionation schemes for liver stereotactic body radiotherapy. Radiotherapy and Oncology, 127, S479–S480. https://doi.org/10.1016/S0167-8140(18)31210-6 Tóth, J., Nagy, A. L., & Papp, D. (2018). Reaction kinetics: Exercises, programs and theorems: Mathematica for deterministic and stochastic kinetics. In Reaction Kinetics: Exercises, Programs and Theorems: Mathematica for Deterministic and Stochastic Kinetics (pp. 1–469). https://doi.org/10.1007/978-1-4939-8643-9 Papp, D. (2017). SEMI-INFINITE PROGRAMMING USING HIGH-DEGREE POLYNOMIAL INTERPOLANTS AND SEMIDEFINITE PROGRAMMING. SIAM JOURNAL ON OPTIMIZATION, 27(3), 1858–1879. https://doi.org/10.1137/15m1053578 Unkelbach, J., Papp, D., Gaddy, M. R., Andratschke, N., Hong, T., & Guckenberger, M. (2017). Spatiotemporal fractionation schemes for liver stereotactic body radiotherapy. Radiotherapy and Oncology, 125(2), 357–364. https://doi.org/10.1016/j.radonc.2017.09.003 Papp, D. (2017). Univariate polynomial optimization with sum-of-squares interpolants. Springer Proceedings in Mathematics and Statistics, 213, 143–162. https://doi.org/10.1007/978-3-319-66616-7_9 Papp, D. (2016). ON THE COMPLEXITY OF LOCAL SEARCH IN UNCONSTRAINED QUADRATIC BINARY OPTIMIZATION. SIAM JOURNAL ON OPTIMIZATION, 26(2), 1257–1261. https://doi.org/10.1137/15m1047775 Gaddy, M. R., & Papp, D. (2016). Technical Note: Improving the VMERGE treatment planning algorithm for rotational radiotherapy. MEDICAL PHYSICS, 43(7), 4093–4097. https://doi.org/10.1118/1.4953193 Papp, D., Bortfeld, T., & Unkelbach, J. (2015, July 7). A modular approach to intensity-modulated arc therapy optimization with noncoplanar trajectories. PHYSICS IN MEDICINE AND BIOLOGY, Vol. 60, pp. 5179–5198. https://doi.org/10.1088/0031-9155/60/13/5179 Unkelbach, J., Bortfeld, T., Craft, D., Alber, M., Bangert, M., Bokrantz, R., … Salari, E. (2015). [Review of Optimization approaches to volumetric modulated arc therapy planning]. MEDICAL PHYSICS, 42(3), 1367–1377. https://doi.org/10.1118/1.4908224 Chen, M., Mehrotra, S., & Papp, D. (2015). Scenario generation for stochastic optimization problems via the sparse grid method. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 62(3), 669–692. https://doi.org/10.1007/s10589-015-9751-7 Unkelbach, J., & Papp, D. (2015). The emergence of nonuniform spatiotemporal fractionation schemes within the standard BED model. Medical Physics, 42(5), 2234–2241. https://doi.org/10.1118/1.4916684 Mehrotra, S., & Papp, D. (2014). A Cutting Surface Algorithm for Semi-Infinite Convex Programming with an Application to Moment Robust Optimization. SIAM Journal on Optimization, 24(4), 1670–1697. https://doi.org/10.1137/130925013 Unkelbach, J., Craft, D., Hong, T., Papp, D., Ramakrishnan, J., Salari, E., … Bortfeld, T. (2014). Exploiting tumor shrinkage through temporal optimization of radiotherapy. Physics in Medicine and Biology, 59(12), 3059–3079. https://doi.org/10.1088/0031-9155/59/12/3059 Craft, D., Papp, D., & Unkelbach, J. (2014). Plan averaging for multicriteria navigation of sliding window IMRT and VMAT. Medical Physics, 41(2), 021709. https://doi.org/10.1118/1.4859295 Papp, D., & Alizadeh, F. (2014). Shape-Constrained Estimation Using Nonnegative Splines. Journal of Computational and Graphical Statistics, 23(1), 211–231. https://doi.org/10.1080/10618600.2012.707343 Craft, D., Bangert, M., Long, T., Papp, D., & Unkelbach, J. (2014). Shared data for intensity modulated radiation therapy (IMRT) optimization research: the CORT dataset. GigaScience, 3(1). https://doi.org/10.1186/2047-217x-3-37 Papp, D., & Unkelbach, J. (2013). Direct leaf trajectory optimization for volumetric modulated arc therapy planning with sliding window delivery. Medical Physics, 41(1), 011701. https://doi.org/10.1118/1.4835435 Alizadeh, F., & Papp, D. (2013). Estimating arrival rate of nonhomogeneous Poisson processes with semidefinite programming. Annals of Operations Research, 208(1), 291–308. https://doi.org/10.1007/s10479-011-1020-2 Mehrotra, S., & Papp, D. (2013). Generating Moment Matching Scenarios Using Optimization Techniques. SIAM Journal on Optimization, 23(2), 963–999. https://doi.org/10.1137/110858082 Papp, D., & Alizadeh, F. (2013). Semidefinite Characterization of Sum-of-Squares Cones in Algebras. SIAM Journal on Optimization, 23(3), 1398–1423. https://doi.org/10.1137/110843265 Mehrotra, S., & Papp, D. (2012). Generating nested quadrature formulas for general weight functions with known moments [Technical report]. Collado, R. A., & Papp, D. (2012). Network interdiction--models, applications, unexplored directions (RUTCOR Research Report No. 4-2012). Papp, D. (2012). Optimal Designs for Rational Function Regression. Journal of the American Statistical Association, 107(497), 400–411. https://doi.org/10.1080/01621459.2012.656035 Nagy, A. L., Papp, D., & Tóth, J. (2012). ReactionKinetics—A Mathematica package with applications. Chemical Engineering Science, 83, 12–23. https://doi.org/10.1016/j.ces.2012.01.039 Rudolf, G., Noyan, N., Papp, D., & Alizadeh, F. (2011). Bilinear optimality constraints for the cone of positive polynomials. Mathematical Programming, 129(1), 5–31. https://doi.org/10.1007/s10107-011-0458-y Papp, D., & Alizadeh, F. (2011). Multivariate arrival rate estimation by sum-of-squares polynomial splines and decomposition [Technical report]. Collado, R. A., Papp, D., & Ruszczyński, A. (2011). Scenario decomposition of risk-averse multistage stochastic programming problems. Annals of Operations Research, 200(1), 147–170. https://doi.org/10.1007/s10479-011-0935-y Boros, E., Gurvich, V., Makino, K., & Papp, D. (2010). Acyclic, or totally tight, two-person game forms: Characterization and main properties. Discrete Mathematics, 310(6-7), 1135–1151. https://doi.org/10.1016/j.disc.2009.11.009 Papp, D., & Vizvári, B. (2005). Effective solution of linear Diophantine equation systems with an application in chemistry. Journal of Mathematical Chemistry, 39(1), 15–31. https://doi.org/10.1007/s10910-005-9001-9