@article{seyitliyev_qin_jana_janke_zhong_you_mitzi_blum_gundogdu_2023, title={Coherent Phonon-Induced Modulation of Charge Transfer in 2D Hybrid Perovskites}, volume={3}, ISSN={["1616-3028"]}, url={https://doi.org/10.1002/adfm.202213021}, DOI={10.1002/adfm.202213021}, abstractNote={Abstract}, journal={ADVANCED FUNCTIONAL MATERIALS}, author={Seyitliyev, Dovletgeldi and Qin, Xixi and Jana, Manoj K. and Janke, Svenja M. and Zhong, Xiaowei and You, Wei and Mitzi, David B. and Blum, Volker and Gundogdu, Kenan}, year={2023}, month={Mar} } @article{dong_fu_seyitliyev_darabi_mendes_lei_chen_chang_amassian_gundogdu_et al._2022, title={Cavity Engineering of Perovskite Distributed Feedback Lasers}, volume={9}, ISSN={2330-4022 2330-4022}, url={http://dx.doi.org/10.1021/acsphotonics.2c00917}, DOI={10.1021/acsphotonics.2c00917}, number={9}, journal={ACS Photonics}, publisher={American Chemical Society (ACS)}, author={Dong, Qi and Fu, Xiangyu and Seyitliyev, Dovletgeldi and Darabi, Kasra and Mendes, Juliana and Lei, Lei and Chen, Yi-An and Chang, Chih-Hao and Amassian, Aram and Gundogdu, Kenan and et al.}, year={2022}, month={Aug}, pages={3124–3133} } @article{biliroglu_findik_mendes_seyitliyev_lei_dong_mehta_temnov_so_gundogdu_2022, title={Room-temperature superfluorescence in hybrid perovskites and its origins}, volume={16}, ISSN={["1749-4893"]}, url={https://doi.org/10.1038/s41566-022-00974-4}, DOI={10.1038/s41566-022-00974-4}, number={4}, journal={NATURE PHOTONICS}, publisher={Springer Science and Business Media LLC}, author={Biliroglu, Melike and Findik, Gamze and Mendes, Juliana and Seyitliyev, Dovletgeldi and Lei, Lei and Dong, Qi and Mehta, Yash and Temnov, Vasily V. and So, Franky and Gundogdu, Kenan}, year={2022}, month={Apr}, pages={324-+} } @article{comstock_biliroglu_seyitliyev_mcconnell_vetter_reddy_kirste_szymanski_sitar_collazo_et al._2022, title={Spintronic Terahertz Emission in Ultrawide Bandgap Semiconductor/Ferromagnet Heterostructures}, volume={10}, ISSN={["2195-1071"]}, DOI={10.1002/adom.202201535}, abstractNote={Abstract}, journal={ADVANCED OPTICAL MATERIALS}, author={Comstock, Andrew and Biliroglu, Melike and Seyitliyev, Dovletgeldi and McConnell, Aeron and Vetter, Eric and Reddy, Pramod and Kirste, Ronny and Szymanski, Dennis and Sitar, Zlatko and Collazo, Ramon and et al.}, year={2022}, month={Oct} } @article{findik_biliroglu_seyitliyev_mendes_barrette_ardekani_lei_dong_so_gundogdu_2021, title={High-temperature superfluorescence in methyl ammonium lead iodide}, volume={15}, ISSN={1749-4885 1749-4893}, url={http://dx.doi.org/10.1038/s41566-021-00830-x}, DOI={10.1038/s41566-021-00830-x}, abstractNote={Light–matter interactions can create and manipulate collective many-body phases in solids1–3, which are promising for the realization of emerging quantum applications. However, in most cases, these collective quantum states are fragile, with a short decoherence and dephasing time, limiting their existence to precision tailored structures under delicate conditions such as cryogenic temperatures and/or high magnetic fields. In this work, we discovered that the archetypal hybrid perovskite, MAPbI3 thin film, exhibits such a collective coherent quantum many-body phase, namely superfluorescence, at 78 K and above. Pulsed laser excitation first creates a population of high-energy electron–hole pairs, which quickly relax to lower energy domains and then develop a macroscopic quantum coherence through spontaneous synchronization. The excitation fluence dependence of the spectroscopic features and the population kinetics in such films unambiguously confirm all the well-known characteristics of superfluorescence. These results show that the creation and manipulation of collective coherent states in hybrid perovskites can be used as the basic building blocks for quantum applications4,5. A collective coherent quantum many-body phase, namely superfluorescence, is observed in CH3NH3PbI3 at 78 K. The excitation fluence dependence of the spectroscopic features and the population kinetics confirm all its well-known characteristics.}, number={9}, journal={Nature Photonics}, publisher={Springer Science and Business Media LLC}, author={Findik, Gamze and Biliroglu, Melike and Seyitliyev, Dovletgeldi and Mendes, Juliana and Barrette, Andrew and Ardekani, Hossein and Lei, Lei and Dong, Qi and So, Franky and Gundogdu, Kenan}, year={2021}, month={Jun}, pages={676–680} } @article{yi_peng_xu_seyitliyev_ho_danilov_kim_reynolds_amassian_gundogdu_et al._2020, title={Critical Role of Polymer Aggregation and Miscibility in Nonfullerene-Based Organic Photovoltaics}, volume={10}, ISSN={["1614-6840"]}, url={http://dx.doi.org/10.1002/aenm.201902430}, DOI={10.1002/aenm.201902430}, abstractNote={Abstract}, number={8}, journal={ADVANCED ENERGY MATERIALS}, author={Yi, Xueping and Peng, Zhengxing and Xu, Bing and Seyitliyev, Dovletgeldi and Ho, Carr Hoi Yi and Danilov, Evgeny O. and Kim, Taesoo and Reynolds, John R. and Amassian, Aram and Gundogdu, Kenan and et al.}, year={2020}, month={Feb} } @article{lei_seyitliyev_stuard_mendes_dong_fu_chen_he_yi_zhu_et al._2020, title={Efficient Energy Funneling in Quasi-2D Perovskites: From Light Emission to Lasing}, volume={32}, ISSN={["1521-4095"]}, DOI={10.1002/adma.201906571}, abstractNote={Abstract}, number={16}, journal={ADVANCED MATERIALS}, author={Lei, Lei and Seyitliyev, Dovletgeldi and Stuard, Samuel and Mendes, Juliana and Dong, Qi and Fu, Xiangyu and Chen, Yi-An and He, Siliang and Yi, Xueping and Zhu, Liping and et al.}, year={2020}, month={Apr} } @article{wang_peng_xiao_seyitliyev_gundogdu_ding_ade_2020, title={Thermodynamic Properties and Molecular Packing Explain Performance and Processing Procedures of Three D18:NFA Organic Solar Cells}, volume={32}, ISSN={["1521-4095"]}, DOI={10.1002/adma.202005386}, abstractNote={Abstract}, number={49}, journal={ADVANCED MATERIALS}, author={Wang, Zhen and Peng, Zhengxing and Xiao, Zuo and Seyitliyev, Dovletgeldi and Gundogdu, Kenan and Ding, Liming and Ade, Harald}, year={2020}, month={Dec} } @article{zhang_chung_huang_vetter_seyitliyev_sun_gundogdu_castellano_danilov_yang_2020, title={Towards radiation detection using Cs2AgBiBr6 double perovskite single crystals}, volume={269}, ISSN={0167-577X}, url={http://dx.doi.org/10.1016/j.matlet.2020.127667}, DOI={10.1016/j.matlet.2020.127667}, abstractNote={In this work, we studied the optical- and electrical- properties of emerging Cs2AgBiBr6 double perovskite single crystals and demonstrated their potential for detecting ionizing radiation. We prepared Cs2AgBiBr6 double perovskite single crystals from a saturated aqueous solution. Low-temperature photoluminescence (PL) was employed to determine the bandgap energies of Cs2AgBiBr6, which are 2.00 eV (indirect) and 2.26 eV (direct) respectively. Using the space charge limited current method, we estimated the density of trap states and mobility of charge carriers as 1.44 × 1010 cm−3 and 7.02 cm2/V-s respectively. A lower bound value of the mobility-lifetime (μ-τ) product of 2.48 × 10−3 cm2/V was determined using 450 nm laser excitation, which was sufficient for ensuring a long drift distance of charge carriers for several radiation detector applications. Furthermore, we tested the direct response of Cs2AgBiBr6 single crystals to X-ray radiation. Our Cs2AgBiBr6 single crystal device with gold electrodes deposited on the two parallel surfaces exhibited excellent linear response to low energy X-rays.}, journal={Materials Letters}, publisher={Elsevier BV}, author={Zhang, Zheng and Chung, Ching-Chang and Huang, Zhengjie and Vetter, Eric and Seyitliyev, Dovletgeldi and Sun, Dali and Gundogdu, Kenan and Castellano, Felix N. and Danilov, Evgeny O. and Yang, Ge}, year={2020}, month={Jun}, pages={127667} } @article{dong_mendes_lei_seyitliyev_zhu_he_gundogdu_so_2020, title={Understanding the Role of Ion Migration in the Operation of Perovskite Light-Emitting Diodes by Transient Measurements}, volume={12}, ISSN={["1944-8252"]}, DOI={10.1021/acsami.0c14269}, abstractNote={Perovskite light-emitting diodes have been gaining attention in recent years due to their high efficiencies. Despite of the recent progress made in device efficiency, the operation mechanisms of these devices are still not well understood, especially the effects of ion migration. In this work, the role of ion migration is investigated by measuring the transient electroluminescence and current responses, with both the current and efficiency showing a slow response in a time scale of tens of milliseconds. The results of the charge injection dynamics show that the slow response of the current is attributed to the migration and accumulation of halide ions at the anode interface, facilitating hole injection and leading to a strong charge imbalance. Further, the results of the charge recombination dynamics show that the slow response of the efficiency is attributed to enhanced charge injection facilitated by ion migration, which leads to an increased carrier density favoring bimolecular radiative recombination. Through a combined analysis of both charge injection and recombination dynamics, we finally present a comprehensive picture of the role of ion migration in device operation.}, number={43}, journal={ACS APPLIED MATERIALS & INTERFACES}, author={Dong, Qi and Mendes, Juliana and Lei, Lei and Seyitliyev, Dovletgeldi and Zhu, Liping and He, Siliang and Gundogdu, Kenan and So, Franky}, year={2020}, month={Oct}, pages={48845–48853} } @article{hany_yang_zhou_sun_gundogdu_seyitliyev_danilov_castellano_sun_vetter_et al._2019, title={Low temperature cathodoluminescence study of Fe-doped β-Ga2O3}, volume={257}, ISSN={0167-577X}, url={http://dx.doi.org/10.1016/j.matlet.2019.126744}, DOI={10.1016/j.matlet.2019.126744}, abstractNote={Optical and electrical properties along the b-axis of Fe-doped β-Ga2O3 were studied using low temperature cathodoluminescence (CL) spectroscopy, optical absorption spectroscopy and current-voltage (IV) measurements. The optical absorption spectroscopy showed an absorption edge without near edge shoulder and the corresponding optical bandgap was calculated to be 4.45 eV using direct band gap treatment. The temperature dependent CL measurements exhibited a strong blue to ultraviolet (UV) band composed of multiple low intensity peaks in the blue range, a main blue peak, a main UV peak, and a weak UV band from the as-grown Fe-doped β-Ga2O3. After a controlled annealing in air, the emissions changed to a red to near infrared (R-NIR) band with two sharp peaks and an UV band that is resolved at room temperature to three UV broad peaks. The R-NIR sharp peaks from the air-annealed sample were ascribed to incorporation of nitrogen during air annealing.}, journal={Materials Letters}, publisher={Elsevier BV}, author={Hany, Ibrahim and Yang, Ge and Zhou, Chuanzhen Elaine and Sun, Cheng and Gundogdu, Kenan and Seyitliyev, Dovletgeldi and Danilov, Evgeny O. and Castellano, Felix N. and Sun, Dali and Vetter, Eric and et al.}, year={2019}, month={Dec}, pages={126744} }