@article{gracioso martins_biehl_sze_freytes_2022, title={Bioreactors for Vocal Fold Tissue Engineering}, volume={28}, ISSN={["1937-3376"]}, DOI={10.1089/ten.teb.2020.0285}, abstractNote={It is estimated that almost one-third of the US population will be affected by a vocal fold (VF) disorder during their lifespan. Promising therapies to treat VF injury and scarring are mostly centered on VF tissue engineering strategies such as the injection of engineered biomaterials and cell therapy. VF tissue engineering, however, is a challenging field as the biomechanical properties, structure, and composition of the VF tissue change upon exposure to mechanical stimulation. As a result, the development of long-term VF treatment strategies relies on the characterization of engineered tissues under a controlled mechanical environment. In this review, we highlight the importance of bioreactors as a powerful tool for VF tissue engineering with a focus on the current state of the art of bioreactors designed to mimic phonation in vitro. We discuss the influence of the phonatory environment on the development, function, injury, and healing of the VF tissue and its importance for the development of efficient therapeutic strategies. A concise and comprehensive overview of bioreactor designs, principles, operating parameters, and scalability is presented. An in-depth analysis of VF bioreactor data to date reveals that mechanical stimulation significantly influences cell viability and the expression of pro-inflammatory and pro-fibrotic genes in vitro. Although the precision and accuracy of bioreactors contributes to generating reliable results, diverse gene expression profiles across the literature suggest that future efforts should focus on the standardization of bioreactor parameters to enable direct comparisons between studies.}, number={1}, journal={TISSUE ENGINEERING PART B-REVIEWS}, author={Gracioso Martins, Ana M. and Biehl, Andreea and Sze, Daphne and Freytes, Donald O.}, year={2022}, month={Feb}, pages={182–205} } @article{biehl_martins_davis_sze_collins_mora-navarro_fisher_freytes_2022, title={Towards a standardized multi-tissue decellularization protocol for the derivation of extracellular matrix materials}, volume={12}, ISSN={["2047-4849"]}, DOI={10.1039/d2bm01012g}, abstractNote={This study represents the first proof-of-concept standardized automated multi-tissue decellularization protocol for the derivation of ECM biomaterials.}, journal={BIOMATERIALS SCIENCE}, author={Biehl, Andreea and Martins, Ana M. Gracioso M. and Davis, Zachary G. G. and Sze, Daphne and Collins, Leonard and Mora-Navarro, Camilo and Fisher, Matthew B. B. and Freytes, Donald O. O.}, year={2022}, month={Dec} } @article{mora-navarro_ozpinar_sze_martin_freytes_2021, title={Transcriptome-targeted analysis of human peripheral blood-derived macrophages when cultured on biomaterial meshes}, volume={16}, ISSN={["1748-605X"]}, url={http://dx.doi.org/10.1088/1748-605x/abdbdb}, DOI={10.1088/1748-605X/abdbdb}, abstractNote={Abstract}, number={2}, journal={BIOMEDICAL MATERIALS}, publisher={IOP Publishing}, author={Mora-Navarro, Camilo and Ozpinar, Emily W. and Sze, Daphne and Martin, David P. and Freytes, Donald O.}, year={2021}, month={Mar} }